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SUMMARY

Deep learning has revolutionized the fields of machine learning and computer

vision. However, the availability of annotated data to train state-of-the-art deep net-

works is one of the main bottlenecks to the successful application of deep learning, es-

pecially to applications like seismic interpretation where annotated data is extremely

scarce. In this thesis, we develop a weakly-supervised framework for the semantic la-

beling of large seismic volumes. This framework involves developing a state-of-the-art

texture similarity measure and using it for retrieving large numbers of images with

high visual similarity to exemplar images for each target class. Images with high

visual similarity can be assigned image-level labels matching those of the exemplar

images used to retrieve them. A novel weakly-supervised label mapping algorithm,

based on orthogonal non-negative matrix factorization, is then used to transform

these image-level labels into pixel-level labels that encode the locations of the target

classes within each image. Finally, these weak pixel-level labels are used to train

deep convolutional networks for the semantic labeling of various seismic structures

and lithostratigraphic units within large seismic volumes. A special loss function is

introduced to help the networks learn effectively when trained with weak labels. The

benefit of this work is that it enables the training and deployment of deep learning

models to new application domains—such as seismic interpretation—where sufficient

quantities of labeled data are not available, and annotation costs are prohibitively

expensive.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, deep learning has witnessed great successes in wide-ranging appli-

cations and has revolutionized the fields of machine learning and computer vision.

This success was not only due to the flood of massive quantities of data and the

growing use of powerful GPUs, but also the arrival of deep learning models that can

achieve state-of-the-art results on a variety of tasks by learning their own hierarchi-

cal data representations, and not requiring any hand-engineered features. Despite

the overwhelming success of deep learning in various vision tasks; there is, however, a

drawback. Deep learning models are often far more complex than traditional machine

learning models and can have hundreds of millions of free parameters. This not only

means that they need large amounts of computational resources to train these models,

but more critically, they require vast amounts of labeled training data. Labeled data

can be extremely costly and time-consuming to obtain. In practice, the high cost of

obtaining labeled data is a critical bottleneck to the successful application of deep

learning to many application domains. This bottleneck is especially true in the field

of seismic interpretation, where oil and gas exploration and production (E&P) com-

panies seldom share their data, and where the subjective nature of the interpretation

process and the lack of ground truth makes it common for geophysicists to arrive at

different interpretations for the same data.
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The exploration and production process

Seismic interpretation is only one step in the hydrocarbon exploration and production

process. This complicated process can be summarized into four main stages: aqui-

sition, data processing, interpretation, and finally, feild development and production.

The acquisition step involves performing large-scale seismic surveys inland or off-

shore by geophysical exploration and production companies to evaluate the prospect

of new hydrocarbon reservoirs in various geographical locations. These surveys gen-

erate vast amounts of raw data. A single day in a typical seismic survey can generate

six terabytes of raw data [1].

In the data processing stage, the raw seismic data obtained from the survey un-

dergoes series of processing steps. These steps include preprocessing, deconvolution,

move-out correction, common mid-point (CMP) sorting and stacking, deconvolution

and migration [2]. The result of these processing steps is a very large 3D (or some-

times a 4D) seismic volume that reflects the various layers and geological structures

in the subsurface of the survey location. Figure 1.1 shows an example of a migrated

3D seismic volume from the well-known Netherlands North Sea F3 block.

Next, the seismic interpretation stage involves the analysis of the migrated seismic

volume. The seismic interpretation process can be subdivided into structural, strati-

graphic, and lithologic interpretation. Structural interpretation is primarily based on

studying subsurface structures, such as faults, fractures, salt domes, and gas chim-

neys. Stratigraphic interpretation is mainly concerned with the study of depositional

environments and sedimentology. Finally, lithologic interpretation involves studying

the physical characteristics of rocks —such as porosity, density, and velocity—from

seismic well logs.

All these three aspects of seismic interpretation are examined and analyzed by

experienced seismic interpreters and geophysicists to understand the geological his-

tory of the survey area better and to create a geological model that reflects this
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Figure 1.1: A three-dimensional view of the Netherlands F3 block [3] showing the
inline, crossline, and time section seismic data in addition to data from three well
logs.

history. The combination of the three elements of seismic interpretation allows the

interpreters to identify potential locations in the geological model where hydrocarbon

reservoirs are likely to be trapped. If the geological model indicates possibilities of

hydrocarbon reservoirs that can be economically viable, exploratory wells are drilled,

and if the results are positive, work on field development and production starts. In

this dissertation, our focus is primarily on structural seismic interpretation. However,

in Chapter 6 we extend our work to stratigraphic interpretation as well.

Depending on the size of the seismic survey and the geology of the region, the

seismic interpretation process can take from several months to more than a year.

Furthermore, with the increasing size of seismic volumes, this process is becoming

increasingly more time consuming and costly. Recently, there has been increasing in-

terest in automated or semi-automated interpretation workflows that can help speed

up the process of interpreting large seismic volumes. For example, in the case of struc-
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tural interpretation, various methods have been recently proposed for detecting and

tracking faults, salt bodies, and other subsurface structures within seismic volumes;

for a good overview of such methods, see [4]. These techniques can help reduce the

time and effort required for interpretation; however, the process of extracting regions

within large seismic volumes based on their dominant subsurface structure—so that

detection or tracking can be performed on the extracted region—is still done man-

ually. This is one of the leading obstacles to end-to-end automated interpretation

workflows. An analogy with natural images would be if a human had to manually

extract the location of every traffic sign or pedestrian, before passing them on to al-

gorithms that classify the traffic signs or track the positions of the pedestrians within

the frames of a video for example.

The opportunities and challenges of seismic volume labeling

To automate the process of extracting regions of interest within large seismic volumes,

we propose the problem of seismic volume labeling. This problem involves the assign-

ment of a class label to every voxel in the 3D seismic volume based on the voxel’s

subsurface structure (in the case of structural interpretation) or its lithostratigraphic

unit (in the case of stratigraphic interpretation). In computer vision, the problem of

assigning class labels to each pixel in an image or a video is an established research

problem known as semantic segmentation1. Semantic segmentation algorithms use ei-

ther classical techniques based on hand-crafted features or learning-based techniques,

commonly based on convolutional neural networks (CNNs), to automatically assign

semantic class labels to every pixel in the image. However, these techniques are not

directly applicable to seismic data2. Seismic data presents challenges that cannot be

immediately solved by the existing methods. These challenges include:

1The term ‘scene labeling’ or ‘scene parsing’ is also used, especially in early papers in the litera-
ture.

2we review these techniques in Chapter 4.
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1. Poorly-defined boundaries: Unlike natural images where the boundaries

between objects are well-defined, boundaries between subsurface structures in

seismic data are either not well-defined or characterized by a change in overall

texture rather than a sudden change in amplitude. In addition, the bound-

aries between different stratigraphic units in seismic volumes are usually defined

by seismic horizons, but subject-matter expertise is required to identify these

horizons from other horizons within the same stratigraphic units. Figure 1.2

highlights the different nature of object boundaries between natural and seismic

images.

(a) (b)

Figure 1.2: An example of the different nature of object boundaries in natural images
(a), and seismic data (b). Boundaries between objects in natural images are well
defined, and can often be highlighted by simple edge detection techniques. Boundaries
between subsurface structures are defined by a change in texture that makes them
more difficult to detect.

2. Lack of color information: As the example in Figure 1.3 shows, natural im-

ages have color information that can significantly help in distinguishing differ-

ent objects and in parsing complex scenes very quickly. Unlike natural images,

seismic data is textured in nature and lacks the rich color information that

distinguishes various objects in natural images.

3. Annotation difficulties: Humans learn to understand their surroundings from
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Figure 1.3: Color information makes it easier to parse complex scenes.

a very young age. Therefore, it is very natural for us to distinguish different

objects in natural scenes. Online services such as Amazon Mechanical Turk

(AMT) help researchers in generating very large scale annotated datasets (such

as ImageNet [5]) by outsourcing the annotation process to thousands of annota-

tors worldwide. Even then, obtaining pixel-level annotations is really expensive.

For instance, in ImageNet, 14 million images are annotated with image-level la-

bels, a subset of 500,000 images have bounding boxes; but only 4,460 images

have pixel-level annotations [6, 7]. For seismic data, the annotation process is a

very time consuming and laborious process that requires subject-matter experts,

and can not be easily outsourced due to licensing and contractual obligations.

Furthermore, the only way to obtain ground truth data in seismic imaging is to

drill wells that can cost up to $40 million for land rigs, and at least $200 million

for offshore rigs [8]. Therefore, the lack of ground truth data can greatly affect

the quality of the annotations, and it is quite normal for different interpreters to
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not agree on a single interpretation for the same seismic data. This is especially

true in the case of complex subsurface formations that require a high level of

experience and understanding of the geology of the survey region. Figure 1.4

illustrates the difference between annotation natural images and seismic data.

(a) (b)

Figure 1.4: An example of the different nature of annotations in natural images (a),
and seismic data (b). Unlike natural images, seismic data usually requires subject
matter experts to annotate the data, and therefore the annotation process cannot be
easily outsourced or expedited. In addition, unlike natural images where it is easy to
find the ground truth, the only way to obtain the ground truth in seismic data is to
drill wells that can be very expensive.

4. Lack of large-scale annotated datasets: There is an abundance of openly

available large-scale annotated datasets for a vast range of problems involving

natural images and videos (e.g., Pascal VOC 3[9] and CityScapes4 [10]). Figure

1.5 shows the exponential growth in the size of openly-available large-scale an-

notated datasets for natural images and videos. For seismic interpretation tasks,

there is a severe lack of annotated seismic data for training and well-established

benchmarks for testing various learning-based approaches. This annotated-data

bottleneck is the leading obstacle to the successful application of deep learning

methods, such as CNNs, to the semantic labeling of large seismic volumes. Ac-

quiring large amounts of annotated seismic data is a very challenging task by

3http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
4https://www.cityscapes-dataset.com/
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Figure 1.5: The exponential growth of the number of images in publically available
annotated datasets in the natural image domain. Red indicates datasets with image-
level labels only, orange indicates datasets with an intermediate form of supervision
such as bounding boxes, and green indicates datasets with predominantly pixel-level
labels. The size of each disk corresponds to the square root of the size of each dataset.

itself.

Learning in the absence of sufficient annotated data

In other vision domains, machine learning researchers and practitioners use various

methods to overcome the lack of sufficient annotated data. Some use various data

augmentation techniques—such as adding random noise, rotations, and cropping ran-

dom patches from the images—to artificially increase the size of their training data.

Others resort to transfer learning by using models pretrained on other datasets and

‘fine-tuning’ these models to their specific dataset or task. However, all these methods
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Unsupervised
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strongly-labeled 
training data for 
only a subset of the 
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• the rest is not 
labeled
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form of strongly-
labeled training 
data 

Figure 1.6: A comparison of how different machine learning paradigms use annotated
training data.

require fully-annotated samples at some point. In many application domains, such as

seismic interpretation, obtaining such fully-annotated samples in large-enough quan-

tities is simply unpractical.

Lately, there has been considerable interest in weakly-supervised methods for la-

beling visual data. Weakly-supervised learning is a machine learning paradigm where

the training labels convey less information than the labels desired at the output of

the trained model. Another commonly used definition of weakly-supervised learning

is that it is a machine learning paradigm where a model is trained using examples

that are only partially annotated [11]. Figure 1.6 summarizes the difference between

various machine learning paradigms regarding their use of annotated data.

Figure 1.7 helps illustrate weakly-supervised learning in the context of a seismic

interpretation task. Assume we would like to train a simple binary classifier to classify

whether pixels in an image belong to a salt body or not. The model takes an input

image similar to the one in the figure and produces the desired output shown, where

red denotes salt body, and cyan denotes everything else. To train a fully-supervised

model, we would need training labels that convey the same information as the desired

output, namely, pixel-level labels for all pixels in the training images. If a geophysicist

only partially labeled the training images, provided a bounding box, or worst of all,
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machine

learning model

desired output

pixel-level labels partial annotation bounding box image-level label

Figure 1.7: An illustration of the difference between full supervision and weak super-
vision. The second row indicates the form of labels used to train the machine learning
model. Red denotes salt body whereas cyan denotes everything else.

just provided an image-level label indicating whether the training image contains a

salt body, then our trained machine learning model would be a weakly-supervised one.

Naturally, weak labels, such as the ones in Figure 1.7 are far easier and less costly to

obtain than strong ones. On the other hand, however, they are far less informative

and usually lead to poor results compared to their fully-labeled counterparts.

Seismic interpretation is an excellent application domain where weakly-supervised

learning can play a significant role in enabling the use of state-of-the-art deep learning

models to automate the most time-consuming and laborious interpretation tasks.

Therefore, the objective of this dissertation is to develop a weakly-supervised

framework for the semantic labeling of large visual volumes using state-of-the-art

deep learning models and to apply this framework to application domains where

large amounts of annotated data are not available. In this dissertation, we use seismic

interpretation as our application domain, and we focus specifically on problems related

to structural and stratigraphic interpretation.
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1.2 Overall Approach

In order to train state-of-the-art deep learning models for the segmentation and la-

beling of large seismic volumes, vast amounts of training data are required. However,

labeled seismic data is extremely limited, and therefore this can be an exceptionally

difficult task. To overcome this challenge, we develop a weakly-supervised framework

for obtaining large amounts of pixel-level labeled training data, using very minimal

input from a seismic interpreter. This framework involves developing an accurate

seismic image similarity measure for computing the pairwise similarity of a very large

number of seismic images. This similarity measure is then used for retrieving large

amounts of images with a high visual similarity to exemplar images selected by an

interpreter. These images contain various structures of interest and are retrieved from

within large unlabeled seismic volumes. This similarity-based retrieval process pro-

vides us with a large number of images with image-level labels that indicate the main

subsurface structure within them. A weakly-supervised label mapping technique is

then used to transform these image-level labels into pixel-level labels that encode

the locations of the target classes within the different images. Finally, these weakly-

mapped labels are used to train deep convolutional networks for labeling subsurface

structures within large seismic volumes.

While this framework was developed for structural seismic interpretation, we ap-

ply the same framework to stratigraphic interpretation where we have created, with

the help of an experienced geologist, the largest annotated dataset in seismic in-

terpretation and made it publically available.5 This dataset allows us to compare

the performance of our weakly-supervised models with the same models trained on

fully-annotated data.

The benefit of our weakly-supervised framework is that it enables the training

and deployment of deep learning models to new application domains, such as seismic

5https://github.com/olivesgatech/facies_classification_benchmark
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interpretation, where sufficient quantities of labeled data are not available. While

this framework was developed with seismic interpretation in mind, it is not difficult

to extend the results of this work to other application domains that suffer similar

problems with lack of sufficient annotated data. Towards this end, and to aid fellow

researchers, the codes and datasets used throughout this dissertation are publically

available6 online.

6https://ghassanalregib.com/publications/
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1.3 Outline

A visual outline of our proposed framework in shown in Figure 1.8. The rest of this

dissertation is organized as follows.

In Chapter 2, we explain the concept of similarity-based image retrieval and review

the relevant literature. We then introduce two novel similarity measures, and we

conduct detailed experiments that show the superiority of our two measures to others

in the literature. We then show how these similarity measures can be used to retrieve a

large number of seismic images that contain similar subsurface structures to exemplar

images of each target class. Furthermore, we show how these images can be assigned

image-level labels based on the experiments we have conducted.

In Chapter 3, we study how effective these image-level labels are in training a

weakly-supervised machine learning model for classifying various seismic structures.

We introduce a framework for weakly-supervised labeling of seismic sections using

only image-level labels. We study the performance of various texture and multireso-

lution features extracted from these images and compare their performance in labeling

structures in the Netherlands North Sea dataset.

In Chapter 4, we introduce a weakly-supervised label mapping algorithm, based on

non-negative matrix factorization (NMF), that maps the image-level labels obtained

previously to pixel-level labels that encode the locations of the target classes. We

show how our proposed algorithm returns confidence values in each predicted pixel-

level label. These pixel-level labels can make it easier for machine learning models to

classify various subsurface structures since the models do not need to infer the pixel

locations of various classes based on the image-level labels of every example. We show

how our proposed method is robust to misretreived images, and how it compares to

different baseline methods.

Chapter 5 shows how the generated weak pixel-level labels and their associated
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confidence values can be used to train deep convolutional neural networks (CNNs) to

classify three main subsurface structures in the Netherlands F3 block. We introduce

a new network loss function that accounts for the label confidence values, and we

show how this new loss function helps reduce false positive classifications. Finally,

we compare the results of this approach to the results in Chapter 3 that only uses

image-level labels.

In Chapter 6 we extend the proposed framework to seismic stratigraphic interpre-

tation. We introduce a state-of-the-art fully-annotated dataset7 that we have created

with the help of a geologist, and made publically available. This dataset maps the

various stratigraphic units in the Netherlands North Sea F3 block. We introduce

these stratigraphic units and introduce two baseline deep learning models based on a

deconvolution network architecture. We then compare the results of these baselines,

when trained on strong versus weak labels, and we show that our framework can be

successfully extended to other applications such as seismic stratigraphic interpreta-

tion.

Finally in Chapter, 7 we conclude this dissertation with an overall summary of

our research, our main contributions, and future research directions.

7https://github.com/olivesgatech/facies_classification_benchmark
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CHAPTER 2

SIMILARITY-BASED IMAGE RETRIEVAL

2.1 Overview

With the tremendous growth of visual content on the web and elsewhere, image

retrieval is commonly used for searching and retrieving images from large image

databases [12]. Traditional image retrieval systems would often rely on various meta-

data, such as captions or tags, to retrieve relevant images efficiently. However, since

many images may not have such metadata or their metadata might not be sufficient to

describe the images accurately, content-based image retrieval (CBIR) is often used to

retrieve images based on their visual content, rather than their metadata. Similarity-

based image retrieval is a subset of CBIR that aims to retrieve images based on their

overall visual similarity to a query image. This “visual similarity” is often computed

using a similarity measure that quantifies the similarity between the two images.

In seismic interpretation applications, the amount of data is enormous, and its

manual annotation is very time consuming and labor intensive. Similarity-based im-

age retrieval can play a significant role in helping to streamline the interpretation

process and make it more efficient and less time-consuming. By retrieving images

that contain similar structures, seismic images that contain similar subsurface struc-

tures can be clustered together. Furthermore, similarity-based image retrieval can

be utilized to create large datasets for the classification of seismic images, without

requiring any human input other than the selection of the query or ‘exemplar’ images

for each class.

In the following section, we review the relevant literature. Then in sections 2.4

and 2.5, we introduce two seismic image similarity measures that are based on the
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curvelet transform [13]. The curvelet transform is described in section 2.3. In section

2.6, we share the results of several experiments and compare our proposed similarity

measures to others in the literature. Finally, in section 2.7, we show how these

similarity measures are used to retrieve a large number of seismic images that contain

similar subsurface structures from within large unlabeled seismic volumes, and show

that above some similarity threshold, the retrieved images can be assumed to belong

to the same class as the query image1. This allows us to assign image-level labels to

these retrieved images.

2.2 Background

From image denoising to image quality assessment and super-resolution, many image

processing applications use objective measures to quantify the similarity (or dissimi-

larity) between two images. These image similarity measures quantify the similarity

between two images, typically as a number between 0 and 1, where a similarity value

of 1 means the images are identical. Sometimes, distance measures—such as the Eu-

clidean distance—are used in this context, with a distance of 0 indicating identical

images. Throughout this work, distance values are transformed to be in the range

r0, 1s to match the similarity values2.

Traditionally, metrics such as the mean square error (MSE) or the peak signal-

to-noise ratio (PSNR) have been used to measure the difference between images,

but they have been widely criticized in the image processing community for their

poor performance as measures of perceptual dissimilarity [14]. Since metrics such

as MSE assume a pixel-to-pixel correspondence between images, they ignore any

spatial relationship between the pixels in the images; therefore they perform poorly

as measures of perceptual dissimilarity.

Structural similarity (SSIM) is a widely-used similarity measure that improves

1With a degree of confidence in this assignment based on the chosen similarity threshold.
2Specifically, we use similarity “ 1

αˆdistance`1 , where α is a positive constant and distance P r0,8q.
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Figure 2.1: A comparison of different image similarity measures for the “Einstein”
image altered with different types of distortions. (a) Reference image. (b) Contrast
stretch. (c) Luminance shift and (d) Gaussian noise. The measures used are MSE,
SSIM [15], and CW-SSIM [16]. Figure adapted from [14] with permission. ©(2009)
IEEE.

upon MSE and PSNR by capturing local image structure using low-level local statis-

tics in the spatial domain [15] or the complex wavelet domain (CW-SSIM)[16]. These

measures and similar ones proposed in the literature are often used for applications

such as image denoising or image quality assessment where the pixel-to-pixel corre-

spondence assumption can be justified. Figure 2.1 shows an image with three different

distortions that perceptually degrade the image to various degrees. However, the MSE

score for the distorted images is almost identical. The perceptual degradation in the

images is captured better by the SSIM and CW-SSIM scores.

A different class of similarity measures is content-based similarity measures. These

measures quantify the similarity between the contents of the images without making

any assumptions about the location of the content within the image. Such mea-

sures usually improve on metrics such as SSIM or CW-SSIM by being translation- or

rotation-invariant to some degree. These content-based measures are often used for

applications like content-based image retrieval (CBIR) in which the goal is to find

images that contain similar visual content to a query image. A particular class of

content-based similarity measures is texture-based similarity measures. These mea-

sures compare the texture content of images and compute their similarity. This is
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of particular interest since our work mainly focuses on seismic images, which are

textured in nature.

A well-known example of such measures is a family of structural texture similarity

measures (STSIM) which uses subband statistics and correlations in a multiscale

frequency decomposition called the steerable pyramid [17]. The steerable pyramid is

a multiscale image decomposition developed by Simoncelli et al. [17]. As shown in

Figure 3.6, the image is first decomposed into highpass and lowpass subbands and

then the lowpass band is further decomposed into bandpass subbands of different

orientations and a lowpass subband. The lowpass subband is then subsampled and

passed as an input to a similar decomposition to obtain details at other scales. The

bandpass filters capture details at different orientations and the subsampling allows

it to capture details of different scales.

Texture attributes for description of migrated seismic volumes: a comparative study

METHODS

Frequency domain techniques

Steerable pyramid (SP)

SP is a multiresolution image representation developed by Si-
moncelli et al. (1992). As illustrated in Figure 1, the technique
first decomposes a given image into a highpass subband and
a lowpass subband. Then it processes the lowpass subband,
obtaining a series of bandpass subbands and another lowpass
subband. The bandpass subbands reveal image details along
various orientations. The newly obtained lowpass subband is
subsampled and then further processed in a similar manner to
yield orientational details at a coarser spatial scale. Such recur-
sive decomposition eventually yields a pyramid of subbands,
representing the original image along different orientations at
different scales. Histograms of the coefficients from the de-
composition can be established for each subband, which cap-
ture the statistical characteristics of the coefficients. The his-
tograms are further examined for retrieval purpose, details of
which will be discussed later in the experiments.

HP Filter

LP Filter BP Filter 1

BP Filter 2

BP Filter N

LP Filter 

Scale Level 2 
Decomposition 

Scale Level K
Decomposition

Image HP Subband

BP Subband

BP Subband

BP Subband

2

Final LP 
Subband

Scale Level 1 
Decomposition

Figure 1: Illustration of a SP decomposition with K scales and
N orientations at each scale. In this paper, we set K = 4 and
N = 8.

Curvelet transform (CT)

CT is also a directional multiscale decomposition, first intro-
duced by Candés et al. (2005). It works by first applying the
two-dimensional fast Fourier transform (2-D FFT) to an im-
age, and then dividing the frequency plane into small sections
(or wedges) corresponding to multiple scales and orientations.
The total number of scales in the curvelet tiling, J, is depen-
dent on the size of the image as

J = dlog2 min(N1,N2)�3e, (1)

where N1 and N2 are the image height and width in pixels,
respectively; and d·e is the ceiling function. The number of
orientations at scale j � 1, K( j), is given by:

K( j) = 16⇥2d( j�1)/2e. (2)

Once the frequency plane is partitioned (see Figure 2 for an
example), curvelet coefficients are generated by applying the

Figure 2: Curvelet tiling of the frequency spectrum showing
different scales and orientations; adapted from Candés et al.
(2005).

2-D IFFT to each wedge (after smoothing). Since the FFT of
real images is symmetric around the origin, only two quadrants
of the Fourier spectrum are necessary for obtaining the coeffi-
cients. Again, histograms are formed for coefficients in each
subband and used in the retrieval experiments.

Space domain techniques

Local binary pattern (LBP)

LBP (Ojala et al., 2002) describes the local spatial structure of
textures by thresholding the neighborhood of each pixel and
defining the result as a binary number. Mathematically, the
LBP operator is expressed as

LBPR,P [ic, jc] =
P�1X

p=0

s
�

Ic � Ip
�
·2p, (3)

where P represents the number of points in the neighborhood
with radius R, [ic, jc] indicates the coordinates of the center
point, and Ic and Ip denote the intensity of the center and
neighboring points, respectively. Function s(·) has a value
of 1 if Ic � Ip. Otherwise, the value of s is 0. Since the
LBP operator encodes only the signs of the difference between
the center and neighboring points, however, the information
of difference magnitude has been discarded. To overcome
this problem, Guo and Zhang (2010) proposed completed LBP
(CLBP), where three components are considered as follows.
First, CLBP C encodes the center pixel intensity into a binary
number. Then, CLBP S and CLBP M are generated using the
difference between the center and its neighbors, with the for-
mer encodes the sign of the difference and the latter the mag-
nitude. Histograms of the three components are concatenated
into one feature vector to describe the local texture pattern. In
fact, CLBP S is exactly the same as LBP. In this paper, we use
CLBP instead of the original LBP. We set P = 20 and R = 3.

Local radius index (LRI)

LRI characterizes a texture pattern by the distribution of dis-
tances between adjacent edges along a certain orientation (Zhai
et al., 2013). A local index can be computed for each image
pixel in two different ways, resulting in two variations of LRI.
For LRI-A, inter-edge distance (i.e., width of adjacent smooth
regions) in each given direction is calculated; while for LRI-
D, the distance from pixels to the nearest edge (i.e., boundary
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(a)

Laplacian Pyramid Dyadic QMF/Wavelet Steerable Pyramid
self-inverting (tight frame) no yes yes
overcompleteness 4/3 1 4k/3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with k = 4. Frequency axes range from
−π to π. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

separable. Figure 1 contains a diagram of the ide-
alized frequency response of the subbands, for
k = 4. We write the Fourier magnitude of the ith
oriented bandpass filter in polar-separable form:

Bi(ω⃗) = A(θ − θi)B(ω),

where θ = tan−1(ωy/ωx), θi = 2π
k and ω = |ω⃗|.

Below, we describe the constraints on the two
components A(θ) and B(ω).

1. ANGULAR DECOMPOSITION

The angular portion of the decomposition, A(θ),
is determined by the desired derivative order. A
directional derivative operation in the spatial do-
main corresponds to multiplication by a linear
ramp function in the Fourier domain, which we
rewrite in polar coordinates as follows:

−jωx = −jω cos(θ)

(note that we have described a derivative opera-
tor in the x direction). We ignore the imaginary
constant, and the factor of ω, which is absorbed
into the radial portion of the function. The rele-
vant angular portion of the first derivative oper-
ator (in the x direction) is thus cos(θ).

Higher-order directional derivatives correspond
to multiplication in the Fourier domain by the

ramp raised to a power, and thus the angular
portion of the filter is cos(θ)N for an N th-order
directional derivative. Knuttson and Granlund
have also developed polar-separable filters with
such angular components [10]. The steerability
of such functions has been discussed in our pre-
vious work [5, 6].

2. RADIAL DECOMPOSITION

The radial function, B(ω), is constrained by both
the desire to build the decomposition recursively
(i.e., using a “pyramid” algorithm), and the need
to prevent aliasing from occurring during sub-
sampling operations. The recursive system dia-
gram for B(ω) is given in figure 23.

The filters H0(ω) and L0(ω) are necessary for pre-
processing the image in preparation for the recur-
sion. The recursive portion of the diagram corre-
sponds to the subsystem contained in the dashed
box. This subsystem decomposes a signal into
two portions (lowpass and highpass). The low-
pass portion is subsampled, and the recursion is
performed by repeatedly applying the recursive
transformation to the lowpass signal.

The constraints on the filters in the diagram are
as follows:

1. Bandlimiting (to prevent aliasing in the sub-
sampling operation):

L1(ω) = 0 for|ω| > π/2.

2. Flat System Response:

|H0(ω)|2 + |L0(ω)|2
[
|L1(ω)|2 + |B(ω)|2

]
= 1.

3. Recursion:

|L1(ω/2)|2 = |L1(ω/2)|2
[
|L1(ω)|2 + |B(ω)|2

]
.

Typically, we choose L0(ω) = L1(ω/2), so that
the initial lowpass shape is the same as that used
within the recursion. An idealized illustration of
filters that satisfy these constraints is given in fig-
ure 3. Note that L1(ω) is strictly bandlimited, and
B(ω) is power-complementary.

3This system diagram is modified from that of [6].

2

(b)

Figure 2.2: (a) Steerable pyramid filter bank and (b) Steerable pyramid spectral
decomposition with 4 orientations and 4 scales. Figure adapted from [17] with per-
mission. ©(1995) IEEE.

STSIM-1 was introduced by Zhao et al. [18]. It replaces the structure term in the

CW-SSIM with terms that compare first-order autocorrelations of neighboring sub-

band coefficients in the steerable pyramid decomposition. Several years later, Zujovic
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et al. introduced STSIM-2 [19]. STSIM-2 builds on the success of its predecessor by

using a broader set of subband statistics in the steerable pyramid decomposition, such

as the cross-correlation of subband statistics at adjacent scales and orientations. Zu-

jovic et al. showed that STSIM-2 achieves state-of-the-art results on texture retrieval

on the Curet and Corbis texture datasets [19].

Another example of such multiscale decomposition is the curvelet transform [20],

which provides an efficient representation of images with high directional content.

Candés and Donoho [20] have shown that images that contain geometrically regular

edges are more compactly represented by a curvelet rather than a wavelet decom-

position. Recently, some texture-based similarity measures based on the curvelet

transform have been proposed in the literature. Zhang et al. [21] proposed a ro-

tationally invariant texture similarity measure using first order statistics of curvelet

features. A very similar approach was proposed by Arivazhagan et al. [22] that used

curvelet co-occurrence features in addition to first order subband statistics. Other

researchers proposed a rotationally-invariant texture distance measure by fitting gen-

eralized Gaussian distributions to the curvelet [23], or wavelet [24], coefficients of the

two images; then the Kullback-Leibler divergence is used to compute the difference

between the different subband densities. However, such rotational invariance is not

suitable for seismic images where the orientation of various subsurface structures is an

important feature. Alternatively, Selvan and Ramakrishnan [25] suggested modeling

the distribution of the singular values of the wavelet coefficients of the two images as

an exponential distribution; then, the Kullback-Leibler divergence between the pa-

rameters of the two exponential distributions is used as a similarity measure between

two texture images.

With the increasing interest in computational seismic interpretation, similarity

measures designed explicitly for seismic images have been proposed. One of the

earliest works in this area was the work proposed by Al-Marzouqi and AlRegib [26]
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who proposed a seismic image similarity measure based on adaptive curvelets. The

scale and angle parameters of the adaptive curvelet transform [27] are found by an

optimization algorithm that maximizes the coefficient of variation of the curvelet

coefficients[28]. A disadvantage of this approach, however, is that this method requires

the curvelets to be adapted to the two images before computing their similarity.

Alternatively, the curvelet adaptation algorithm can be run on the entire dataset

beforehand. However, this process is computationally expensive, and therefore this

method does not suit our application well. Later, driven by the fact that seismic

images are textured in nature, Long et al. [29] proposed combining the STSIM-

1 texture similarity measure [18] with seismic discontinuity maps [30] to obtain a

seismic image similarity measure that exploits the texture content of seismic images.

While the use of the discontinuity map attribute in SeiSIM allows the STSIM-1 to

be more sensitive to seismic data, the discontinuity map is computed in the spatial

domain and is very computationally demanding. In sections 2.4 and 2.5 we present

two similarity measures, based on the curvelet transform, that achieve state-of-the-

art results in terms of retrieval accuracy, while not requiring any parameter selection

or expensive spatial domain computations. In the following section, we review the

curvelet transform in more detail.

2.3 The Curvelet Transform

The curvelet transform is a directional multiscale decomposition. Candés and Donoho

introduced the first generation of the curvelet transform in 2000 [31] then refined it a

few years later [32]. Despite their popularity, wavelets fail to compactly represent im-

ages with highly directional elements such as curves and edges [33]. To the contrary,

curvelet frames have been shown to represent images with geometrically regular edges

(such as seismic images) more compactly than other traditional multiscale represen-

tations [32]. This is especially true for seismic images where the seismic wavefronts lie
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Figure 2: The figure illustrates the basic digital tiling. The windows Ũj,` smoothly localize the
Fourier transform near the sheared wedges obeying the parabolic scaling. The shaded region rep-
resents one such typical wedge.

By construction, Vj(S✓` !) = V (2bj/2c!2/!1 � `) and for each ! = (!1,!2) with !1 > 0, say, (2.2)
gives

1X

`=�1
|Vj(S✓` !)|2 = 1.

Because of the support constraint on the function V , the above sum restricted to the angles of
interest, �1  tan ✓` < 1, obeys

P
all angles |Vj(S✓` !)|2 = 1, for !2/!1 2 [�1 + 2�bj/2c, 1 � 2�bj/2c].

Therefore, it follows from (3.2) that

X

all scales

X

all angles

|Ũj,`(!)|2 = 1. (3.5)

There is a way to define “corner” windows specially adapted to junctions over the four quadrants
(east, south, west, north) so that (3.5) holds for every ! 2 R2. We postpone this technical issue to
Section 7.2.

The pseudopolar tiling of the frequency plane with trapezoids, in Figure 2, is already well-established
as a data-friendly alternative to the ideal polar tiling. It was perhaps first introduced in two articles
that appeared as book chapters in the same book, Beyond Wavelets, Academic Press, 2003. The
first construction is that of contourlets [15] and is based on a cascade of properly sheared direc-
tional filters. On the other hand, ridgelet packets [24] are defined directly in the frequency plane
via interpolation onto a pseudopolar grid aligned with the trapezoids.

In the next two sections we explain in parallel the two versions of the transform, namely via
USFFT and via Wrapping. In a nutshell, the two implementations di↵er in the way curvelets at
a given scale and angle are translated with respect to each other. In the USFFT-based version
the translation grid is tilted to be aligned with the orientation of the curvelet, yielding the most
faithful discretization of the continuous definition. In the Wrapping version the grid is the same for

10

(a) Frequency viewpoint (b) Spatial viewpoint of the real part of
the wedge.

Figure 2.3: Frequency and spatial viewpoints of a curvelet wedge. Adapted from [13].
Copyright ©2006 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved.

mainly along smooth curves. Candés and Donoho [20] have shown that the curvelet

transform provides an optimally sparse representation for curve-like structures, such

as seismic reflectors when compared to wavelets. The curvelet transform has been

successfully used in wide-ranging applications within seismic signal processing from

seismic denoising [34] to primary multiple separation [35] and seismic migration [36].

For an image with N number of pixels, the fast discrete curvelet transform (FDCT)

allows the computation of curvelet coefficients in OpN logNq operations making the

curvelet transform not only fast to compute, but also scalable to very large image

datasets [37]. The reasons outlined in this paragraph lead us to believe that the

curvelet transform would be very suitable for calculating the pairwise similarity of

seismic images, and would be efficient enough to allow these similarity computations

to be done on a large scale.

For our purposes here, we present a simplified overview of the FDCT. For a de-
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tailed description see [37]. Given an image of size N1 ˆ N2, the FDCT divides the

Fourier support of the image into J scales and Kpjq orientations as is shown in Figure

2.3(a). The total number of scales in the curvelet tiling, J , depends on the size of the

image, and is given by

J “ rlog2 minpN1, N2q ´ 3s, (2.1)

where r¨s is the ceiling function. The number of orientations at scale j ě 1, Kpjq, is

given by:

Kpjq “ 16ˆ 2rpj´1q{2s. (2.2)

For scale j “ 0, there is only one orientation. Curvelet coefficients are then generated

by taking the inverse 2D FFT for each wedge (such as the one highlighted in Figure

2.3(b) after multiplying it by a smooth bandpass filter. Since the 2D FFT of real

images is symmetric around the origin, only two consecutive quadrants of the Fourier

spectrum are necessary for obtaining the curvelet coefficients. Figure 2.3 shows the

spatial and frequency representations of a curvelet wedge.

2.4 Method 1: Histogram of Curvelet Coefficients

The first proposed similarity measure [38] is very simple but outperforms the other

measures that preceded it in the literature. This method, which we refer to as method

1, is based on computing the sum of the squared chord distance [39] between corre-

sponding histograms of curvelet coefficients, at all scales and orientations. The re-

sulting value is then normalized to generate a similarity value. Given two images, x1

and x2, we first normalize the two images by subtracting the mean and dividing by

the standard deviation

x̂i “
xi ´ µxi

σxi
. (2.3)

Then, the squared-chord distance (SCD) [39] is used to calculate the distance

between the corresponding histograms of the curvelet coefficients of the two images
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for each orientation and scale. We use the SCD here, as opposed to Euclidean or

Manhattan distances, because it has been shown repeatedly that SCD outperforms

them in various image retrieval tasks [40, 41, 42, 43]. If we let h
p1q
j,kpiq be the ith bin in

the histogram of the curvelet coefficients of image x̂1 at scale j and orientation k, and

similarly, h
p2q
j,kpiq for image x̂2. Then, we can define the following distance measure:

distancepx̂1, x̂2q “

J´1
ÿ

j“0

Kpjq{2
ÿ

k“1

M
ÿ

i“1

ˆ

b

h
p1q
j,kpiq ´

b

h
p2q
j,kpiq

˙2

, (2.4)

where M is the total number of bins in the histogram, J is the number of curvelet

scales, and Kpjq is the number of orientations at scale j. This distance measure is

then converted to a similarity measure by using the following function:

Method 1px1,x2q “
1

α ˆ distancepx̂1, x̂2q ` 1
. (2.5)

Where α is a constant set to 10. This function is monotonic, so it does not affect

the retrieval performance of this measure. Since this method takes the SCD over

the corresponding histograms in each scale and orientation, it is not scale or rotation

invariant. This allows this similarity measure to be sensitive to structures of different

orientations and scales, such as small discontinuities or large salt domes. Finally, due

to the simplicity of this approach, and its reliance only on the fast discrete curvelet

transform, it is significantly faster than other seismic similarity measures we have

tested (seven times faster than SeiSIM [29] and almost nine times faster than the

adaptive curvelets approach [26]).

2.5 Method 2: Truncated Curvelet Singular Values

The second proposed similarity measure [44] computes the similarity on the singular

values of the curvelet coefficients of the two images, after effective-rank truncation.
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Figure 2.4: Overall block diagram of Method 2

Given the two images we compute feature vectors for the two images separately, and

then the similarity of the two images is computed by comparing their correspond-

ing feature vectors. The overall workflow for computing the similarity values using

method 2 is shown in Figure 2.4.

To obtain the feature vector for an image, x1, we first normalize the image by

subtracting the mean and dividing by the standard deviation

x̂i “
xi ´ µxi

σxi
. (2.6)

Then, we apply the fast discrete curvelet transform, and compute its coefficients for

all scales, j “ t0, 2, . . . , J ´ 1u, and orientations, k “ t1, 2, . . . , Kpjqu. The singular

values of the curvelet coefficients at every scale j and orientation k are then calculated

as σrj,ks “ rσ1, . . . , σLs
T where σ1 ě σ2 ě . . . ě σL and L is the smallest dimension of

the coefficients matrix.

Ideally, if the rank of a matrix is r, only the first r singular values are non-zero.

However, when we consider the singular value decomposition (SVD) on images that

are subject to different types of noise, the number of non-zero singular values is

greater than r. In most cases, none of the singular values are exactly zero; even for a

rank-deficient matrix. Roy and Vetterli [45] proposed the effective rank as a method

to estimate the actual rank of a matrix by estimating its effective dimensionality. To
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calculate the effective rank, we first compute the normalized singular values as

pi “
σi

}σrj,ks}1
for i “ 1, . . . , L, (2.7)

where } ¨ }1 is the `1 norm. Then, the effective rank is calculated as a function of the

entropy of the singular value distribution defined in equation 2.7, that is

EffectiveRank “ exp

˜

´

L
ÿ

i“1

pi log pi

¸

. (2.8)

This results in a real number less than or equal to L with equality if and only if all

singular values are equal.

For each set of curvelet coefficients, the EffectiveRank, is calculated as in equa-

tion 2.8. A new vector of effective singular values is formed by keeping the first

tEffectiveRanku singular values, where t¨u denotes the floor function. The remaining

singular values are set to 0. In other words, for scale j and orientation k, we form

the vector σ̂rj,ks “ rσ1, . . . , σtEffectiveRanku, 0, . . . , 0s. The overall feature vector of image

x̂i is then obtained by concatenating all σ̂rj,ks for all scales and half the number of

orientations,

vi “ rσ̂r1,1s, σ̂r2,1s, . . . , σ̂r2,Kp2q{2s, σ̂r3,1s . . . , σ̂rJ,1ss. (2.9)

Finally, the similarity between two images, x̂1 and x̂2, is then computed as

Method 2px̂1, x̂2q “ 1´
}v1 ´ v2}1

}v1 ` v2}1
. (2.10)

Where, v1 and v2 are the feature vectors corresponding to x̂1 and x̂2. Since the

singular values are non-negative by definition, the resulting similarity value is in the

range r0, 1s with a value closer to 1 indicating higher similarity.
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2.6 Results

To evaluate the performance of our proposed seismic image similarity measures, we

devise two experiments. Namely, an experiment on seismic image retrieval and an-

other on seismic image clustering. Both of these experiments are performed directly

on the similarity matrices of the various measures. These matrices contain the pair-

wise similarity values between for all images in the dataset for a specific measure. For

example, for a dataset that contains Ns images, the size of the similarity matrix S is

NsˆNs, where Spi, jq is the similarity between xi and xj. The ith row of S represents

the similarity values of all images in the dataset compared to xi.

Throughout the similarity-based retrieval experiments, we use the LANDMASS-2

dataset3 [46] which is comprised of Ns “ 4000 images of size 99 ˆ 99 pixels, with

their values normalized to be between 0 and 1. These images were extracted from

the Netherlands Offshore F3 block and divided equally into four classes according to

their dominant subsurface structure. The classes are horizon, chaotic, fault and

salt dome. Figure 2.5 shows sample images from each class.

In our experiments, we compare the performance of our proposed methods to

different similarity and distance measures. The following measures were used in the

experiments:

1. Euclidean distance

2. CW-SSIM with default parameters [16]

3. STSIM-1 and STSIM-2 with 4 scales and 8 orientations [19]

4. SeiSIM with 4 scales and 8 orientations [29]

5. Curvelet-based distance measure [38]

The performance of these similarity measures is quantified using commonly used

information retrieval and clustering metrics. These metrics and other metrics used

throughout this dissertation are detailed in Appendix A. In the following subsections,

3https://ghassanalregib.com/landmass/
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(a) horizon (b) chaotic

(c) fault (d) salt dome

Figure 2.5: Sample images from the four classes of the LANDMASS-2 dataset.

we discuss the results of the retrieval and clustering experiments.

2.6.1 Retrieval experiment

To assess the retrieval performance of our method, we compute the pairwise similarity

between all the images in the dataset and use these values to populate the similarity

matrix, Spi, jq, for every one of the similarity and distance measures listed above.

Then the various retrieval metrics are computed directly on these similarity matrices

to test their performance.

Figure 2.6 shows the receiver operating characteristic (ROC) curves for the var-

ious measures listed above. ROC curves plot the true positive (correctly retrieved)

rate versus the false positive (wrongly retrieved) rate for various threshold values.

The closer the curve of a similarity measure to the upper left corner of the plot,

the better its retrieval performance. The results in Figure 2.6 show that both our

similarity measures significantly outperform the others, with our method 2 slightly

outperforming method 1.
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Figure 2.6: Receiver operating characteristics (ROC) curves for the various measures
used in the retrieval experiments.

Table 2.1 shows the retrieval performance of the different measures using re-

trieval accuracy (RA), mean average precision (MAP), and area under the ROC curve

(AUC). RA measures the overall percentage of correctly retrieved images. MAP is

similar to RA, but considers the rank of the correctly retrieved images. Finally, AUC

quantifies the ROC performance of the different measures. In all three performance

metrics, our two methods significantly outperform the others. In third and fourth

place are STSIM-1 and STSIM-2, the state-of-the-art measures in texture similarity.

SeiSIM, a recent similarity measure specifically designed for seismic images, performs

surprisingly poorly with only about 82% of the images correctly retrieved.

Figure 2.7 shows the precision atM results for the different classes in the LANDMASS-

2 dataset that were retrieved using different similarity measures. The black curves

show the similarity at M averaged over the entire dataset, while the colored curves

show the results for specific classes of images. The results show that all the similarity

measures, except CW-SSIM, correctly retrieve all the horizon images in the dataset.
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Table 2.1: The performance of the different similarity measures in the retrieval ex-
periment.

Measure Features RA MAP AUC

Euclidean distance N/A 0.345 0.394 0.515

CW-SSIM [15] Complex Wavelet 0.721 0.806 0.858

STSIM-1 [19] Steerable Pyramid 0.867 0.926 0.966

STSIM-2 [19] Steerable Pyramid 0.855 0.910 0.964

SeiSIM [29] Steerable Pyramid 0.819 0.886 0.945

Method 1 [38] Curvelet 0.896 0.949 0.978

Method 2 [44] Curvelet 0.911 0.954 0.983

This is mainly due to the simplicity, and lack of diversity, of the structures in the

horizon class. On the other hand, the precision at M curves of the other classes drops

at different rates depending on the complexity of their structures and the sensitivity

of the similarity measure in capturing these complex structures. The chaotic class,

in particular, seems to be particularly challenging for many of the similarity measures

except our proposed method 2. Also, while our two proposed methods show superior

performance to the other similarity measures, method 2, in particular, shows the most

consistent performance across all classes, whereas method 1 does not perform well in

the chaotic class.

2.6.2 Clustering experiment

To further assess the performance of the similarity measures listed above on seismic

data, we set up a clustering experiment using the similarity matrix obtained previ-

ously. First, the images in the dataset are projected into a two-dimensional Euclidean

subspace based on their similarity, such that the distance between images in the pro-

jection subspace is inversely proportional to their similarity values. This projection is

done using classical multidimensional scaling (MDS) [47]. Then, the projected data

points are clustered into four clusters using the k-means algorithm.

The resulting clusters do not necessarily correspond to classes; unless the similarity
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Figure 1: The results of two-dimensional MDS applied on all the images using
different similarity measures. The cyan, blue, green, and red colors correspond
to the horizon, chaotic, fault, and salt dome classes respectively

1

Figure 2.7: The precision at M results for the different classes of the LANDMASS-
2 dataset retrieved using various similarity measures. The cyan, blue, green, and
red colors correspond to the horizon, chaotic, fault, and salt dome images re-
spectively. The black curve shows the precision at M result averaged over all the
classes.
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Table 2.2: The performance of the different similarity measures in the clustering
experiment

Measure Features Rand Index

Euclidean distance N/A 0.394

CW-SSIM [15] Complex Wavelet 0.870

STSIM-1 [19] Steerable Pyramid 0.895

STSIM-2 [19] Steerable Pyramid 0.877

SeiSIM [29] Steerable Pyramid 0.888

Method 1 [38] Curvelet 0.905

Method 2 [44] Curvelet 0.970

measure is very accurate. Therefore, one can use the clustering results to quantify

the goodness of the similarity measure. To evaluate the clustering performance, we

compute the rand index (explained in Appendix A.2) which is a measure of the

accuracy of the clustering. We report the rand index results for different similarity

measures in Table 2.2. The results of the clustering experiment further validate our

conclusion from the retrieval experiment that our similarity measures are superior to

other methods in the literature. Our proposed method 2 significantly outperforms

other measures in the literature, with a rand index of 0.970 compared to STSIM-1

which achieves a rand index of 0.895.

Also, we show the two-dimensional projection of the data using all the similarity

measures in Figure 2.8. The figure shows that using the similarity values to project

the dataset into a lower dimensional subspace produces clusters that are almost lin-

early separable. Horizon and salt dome classes are separated well from all other

classes. However, the fault and chaotic classes commonly overlap, with our pro-

posed methods showing the least overlap between the two classes. It is important to

mention that this is only a two-dimensional projection of the data and that the data

is more easily separated in a higher-dimensional space. A two-dimensional projection

was chosen partly for the ease of visualization, and to increase the challenge of the

classification experiment. These results suggest that our proposed similarity measures
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can be used to discriminate the different classes of seismic images with high accuracy.

2.7 Seismic Image Retrieval

The results in section 2.6 show that out of all the similarity measures we tested,

our proposed method 2 significantly outperforms the other measures, including the

state-of-the-art measure in texture similarity. Therefore, in the remainder of this

dissertation, we will always elect to use method 2 for our retrieval purposes. Given a

suitable similarity measure, we can retrieve large numbers of images from unlabeled

datasets based on their similarity to hand-selected exemplar images that are selected

by an experienced interpreter. The process of selecting the exemplars only involves

cropping small patches from within an unlabeled seismic volume. These exemplar

images are used to represent the interpreter’s notion of various subsurface structures.

While more exemplar images would undoubtedly lead to better results, we restrict

the number of exemplars per class to a maximum of two. This is done to test the

effectiveness of our approach, and to keep user input at a minimum.

Our exemplar images represent chaotic layers, faults, and salt domes which are all

well-known subsurface structures; we also add an additional class (other) to contain

examples of subsurface structures that do not belong to the first three (such as hori-

zons, and sigmoidal structures). These classes of subsurface structures were selected

because they commonly form traps for hydrocarbons reservoirs and because they are

the least controversial to interpret. Other structures such as gas chimneys are more

subjective to interpret and require more in-depth knowledge of the geological history

of the survey area.

Given these exemplars, shown in Figure 2.9, we search through the entire Nether-

lands F3 block dataset [3] for images that contain similar subsurface structures. We

retrieve M “ 500 images for each class of subsurface structures. Figure 2.10 shows

examples of these retrieved images. Given the results of method 2 in Figure 2.7, we
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would expect the precision at M “ 500 to be at least 95%. This is a valid expectation

since the LANDMASS-2 dataset that was used in the experiments section is a tiny

subset of the Netherlands F3 block. However, this accuracy level is not necessarily

guaranteed since different exemplar images can lead to different results. Given that

we expect around 95% of the retrieved images to contain subsurface structures of

the same class, we can safely assign these retrieved images ‘image-level’ class labels

that match that of the exemplar image that was used to retrieve them. This is how

the similarity-based retrieval process automatically generates image-level labels for a

large number of unlabeled images extracted from the seismic volume.

At this stage, we have thousands of seismic images containing different subsurface

structures, with image-level labels assigned to them. The next chapter will investigate

how these image-level labels alone can be used for the structural interpretation of

seismic volumes.

2.8 Summary

In summary, we have proposed two seismic image similarity measures based on the

curvelet transform. We have shown that the proposed methods outperform existing

methods in the literature in different applications such as seismic image retrieval

and clustering. Also, since these methods rely only on the fast discrete curvelet

transform, they are computationally efficient and can scale easily to large seismic

volumes. Method 2 has shown the best results on all the metrics we have used and

has shown the most consistent performance across the different classes of subsurface

structures that we have investigated. Therefore, we use this method to retrieve a

large number of seismic images from the Netherlands F3 block, given exemplar images

that contain seismic structures of interest. These retrieved images can later be used

in the automation of structural interpretation by training machine learning models

to recognize the common structures in each class of seismic images.
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Figure 1: The results of two-dimensional MDS on different similarity measures.
The cyan, blue, green, and red colors correspond to the horizon, chaotic,
fault and salt dome classes.

1

Figure 2.8: The results of two-dimensional MDS on different similarity measures.
The cyan, blue, green, and red colors correspond to the horizon, chaotic, fault
and salt dome classes.
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(a) chaotic (b) faults (c) other 1

(d) other 2 (e) salt dome 1 (f) salt dome 2

Figure 2.9: The exemplar images of each class of subsurface structures that were used
to retrieve the images from the seismic volume. One exemplar image was used for
chaotic and fault, and two exemplars were used for other and salt dome. These
images are of size 99ˆ 99 pixels and were obtained from the Netherlands Offshore F3
Block [3].
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Exemplar ———————— sample retrieved images ————————

Figure 2.10: Sample retreived images from each class of subsurface structures. The
first column shows one of the exemplar images for the chaotic, other, faults, and
salt dome classes. These exemplar images are highlighted in blue, cyan, green, and
red respectively.
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CHAPTER 3

STRUCTURAL INTERPRETATION WITH WEAK IMAGE-LEVEL

LABELS

3.1 Overview

In the previous chapter, we have introduced a similarity measure that can be used

to retrieve large numbers of images similar to an exemplar image from within large

unlabeled seismic volumes. We have shown how this similarity-based retrieval process

can be used to assign image-level labels to a large number of images. In this chapter,

we investigate the use of these image-level labels in the semantic labeling of subsur-

face structures [48, 49, 50]. Since image-level labels are used to predict subsurface

structures on the pixel-level, our trained models are weakly-supervised. We often

refer to labels used to train such models as ‘weak’ labels.

Subsurface structure labeling is the process of classifying the voxels within a seis-

mic volume into one of many predefined structures. While labeling using image-level

(rather than pixel-level) labels is not ideal, it serves as a baseline for our later work.

In addition, image-level labels are far easier to obtain that pixel-level labels, and

therefore can be more useful for applications where obtaining pixel-level labels is too

expensive. Finally, some applications (such as object detection) do not require a

highly-accurate pixel-level segmentation since more often than not, we are interested

in the bounding boxes of individual objects rather than their pixel-level masks. In

the case of seismic structural interpretation, such a rugged segmentation can still be

useful in extracting seismic subvolumes around various subsurface structures (such

as faults or salt domes) and applying advanced computational seismic interpretation

techniques on these subvolumes [4].
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The remainder of this chapter is organized as follows. Section 3.2 introduces our

weakly-supervised framework for subsurface structure labeling using only image-level

labels. In Section 3.3, we review several texture and multiresolution attributes that

we used in our framework to evaluate the best feature representation that can be used

for this application. We present the results in Section 3.4, and we summarize and

conclude this chapter in Section 3.5.

3.2 Labeling with Image-Level Labels

Training Stage

Prediction Stage

Oversegmentation
Feature 

Extraction
Classifier

labeled seismic 
volume

large seismic 
volume

Feature 
Extraction

Classifier

… … … …

image-level labeled training data

Figure 3.1: A block diagram illustrating the weakly-supervised subsurface structure
labeling framework described in this chapter.

In the seismic interpretation literature, there has been a lot of interest in the

semantic labeling of subsurface structures such as salt domes [51, 52, 53, 54, 55, 56,

57, 58] or faults [59, 60, 61, 62, 63]. These techniques either use classical computation

seismic interpretation techniques that are not data-driven [64, 53, 54, 55, 56, 57, 60],

or fully-supervised machine learning models that require strong labels [62, 65] or

synthetic models [66, 67]. Other than our proposed work [48], no other work uses a

weakly-supervised approach for labeling seismic structures. Although many weakly-

supervised semantic segmentation methods have been proposed in the natural image

domain, we review these methods in detail in Chapter 4.

The framework we propose for labeling subsurface structures using image-level

labels can be divided into two main stages; the training stage where features ex-
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tracted from the image-level labeled training data are used to train a classifier, and

the prediction stage where the classifier is used to predict the labels of subsurface

structures in seismic sections. The training stage is performed once; then once the

classifier is trained, it is used in the prediction stage to predict the labels of every

seismic section of interest. The overall process of labeling subsurface structures using

image-level labels is illustrated in Figure 3.1

3.2.1 Training Stage

Our training process involves two steps. The first step is to extract characteristic

features from each image in the training set to form a feature vector. Before extracting

these features from an image xi, we first calculate the Hadamard product of this image

with a two-dimensional Gaussian kernel of the same size, g. This kernel gives more

weight to the structures at the center of the image and less to those on the periphery,

thus emphasizing local spatial correlations in seismic data. The procedure can be

expressed as follow:

rxi “ xi d g, (3.1)

where d is the Hadamard product, and the Gaussian kernel is defined as

grx, ys “ e
px´µxq

2`py´µyq
2

2σ2 , (3.2)

where µx and µy are the x- and y- coordinates of the center of xi, respectively. The

value of σ was set to 25 in our experiments so that pixels in the corners of the image

have weights of less than 1%.

After this pre-processing step, one of many different texture and multiresolution

techniques is applied to the image to generate the feature vector. The texture fea-

tures include the grey level co-occurrence matrix (GLCM)[68], local radius index

(LRI)[69], local binary patterns (LBP)[70] and many of its variants (completed LBP
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(CLBP)[71], multiscale CLBP (M-CLBP), extended LBP (ELBP)[72], and completed

local derivative pattern (CLDP)[73]). The multiresolution features include features

from non-directional transforms such as discrete and stationary wavelets, in addition

to directional multiresolution features from Gabor filters[74], steerable pyramids[17],

contourlets[75], non-subsampled contourlets[76], and curvelets[13]. These different

techniques are listed in Section 3.3.

In the second step of the training process, the feature vectors extracted from the

training images are used to train an image classifier. We use a support vector machine

(SVM) [77] as the classifier, which is a powerful binary classification algorithm. It

seeks to find the optimal separating hyperplane between two classes by identifying the

one with the maximum margin. Since we have a multi-class classification problem,

we train four hard-margin SVMs with linear kernels using the one-versus-all (OVA)

approach.

3.2.2 Prediction Stage

The prediction stage consists of three main steps. First, for every seismic section

to be labeled, an image over-segmentation is performed such that the section is au-

tomatically divided into small segments that align with the local structures within

the section. To achieve this, we use a superpixel-based over-segmentation approach

that groups neighboring pixels of similar appearance into a single cluster. Overseg-

mentation algorithms, like normalized cuts [78], are sometimes used in computational

seismic interpretation to extract subsurface structures [79, 80, 57]. However, over-

segmentation here is used as a preprocessing step to enforce local spatial correlation

by grouping pixels in the volume that are similar and close to each other. Here, the

lack of clearly-defined boundaries between subsurface structures is inconsequential,

and instead, each small segment is classified based on its texture content. This step

also significantly reduces the computational cost of the labeling, since each segment
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will be classified once, and the resulting label will then be propagated to all the pixels

within that segment.

In this work, we use a superpixel segmentation algorithm based on the simple lin-

ear iterative clustering (SLIC) algorithm [81]. Graph-based over-segmentation tech-

niques (such as graph cuts [82] and normalized cuts [78]) or gradient descent based

approaches (such as the watershed algorithm [83] and turbo pixels [84]) are compu-

tationally expensive, and therefore not suitable for large seismic volumes. Therefore,

simpler and more computationally efficient SLIC is a more appropriate choice for this

application. In the original SLIC algorithm, vectors in the form of rl, a, b, x, ys are

generated for each pixel in an image to be segmented, where l, a, and b are the three

components of the Lab color model, and x, y are the coordinates for each pixel. Then

clustering is performed in a space formed by these vectors to obtain the superpixels.

Because seismic images are grayscale, we compute vectors for the pixels in the form

rl, gx, gy, x, ys, in which gx and gy refer to the gradient along the x- and y- directions,

respectively. This helps align the SLIC superpixels to the small edges in the seismic

section.

In the second step of the prediction stage, similar to the training process, texture

attributes are extracted for each superpixel. Typically, the size of a superpixel is

smaller than that of the images in the training dataset. To make sure that the

attribute extraction is consistent between the training and the prediction stages, we

extract a neighborhood of the same size as that of the training images centered around

the centroid of the superpixel. These extracted neighborhoods are then multiplied

with the Gaussian kernel g as in Equation 3.1. Then features extracted from these

images are used to represent the superpixel at their center.

Finally, in the last step of the prediction stage, the feature vectors generated for

each superpixel are fed into the SVM classifier. The classifier then classifies these

superpixels into the different subsurface structures. This process is done for all the
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superpixels in all the sections of the seismic volume. This leads to labeled seismic

sections such as the one in Figure 3.2.

Figure 3.2 shows inline #380 from the Netherlands North Sea F3 block labeled

using our workflow with curvelet features, in addition to the manually annotated

result. One of the disadvantages of relying solely on image-level labels is evident in

the figure. The faults exemplar image contains strong seismic reflectors in addition

to multiple faults, and since we limited ourselves to a single exemplar image for the

faults class, our classifier labeled most strong reflectors as belonging to the faults

class.

(a)

(b)

Figure 3.2: (a) A labeled seismic section from the Netherlands North Sea F3 block
database using curvelet features. (b) A manually annotated seismic section. The
chaotic class is in blue, faults is in green, and salt dome is in red.
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3.3 Comparison with Various Texture and Multiresolution Features

In the feature extraction stage in Figure 3.1, any feature representation can be used

to test this workflow. Naturally, we would like to investigate the most suitable fea-

ture representation for this application. We conducted two comparative studies to

examine various texture and multiresolution feature representations in the context of

subsurface structure labeling [49, 50]. Seven feature representations were tested in

each study.

In the first study[49], our focus was on a group of spatial attributes and local

descriptors, including the local binary pattern (LBP), a few of its variants, and the

local radius index (LRI) [85]. These attributes have been widely used for texture

representation in the literature. For comparison purposes, the study also included a

traditional seismic attribute computed in the spatial domain, namely, the GLCM. In

the second study[50], we examined multiresolution attributes in the frequency domain

for subsurface structure labeling. We examined the discrete wavelet transform and its

nonsubsampled version, Gabor filters, the steerable pyramid, the contourlet transform

and its nonsubsampled version, and finally, the curvelet transform.

The fourteen texture and multiresolution feature representations that we tested

are briefly described below.

1. Texture features

1.1. LBP: The local binary pattern (LBP) is a simple and efficient texture fea-

ture representation, which has become a standard local texture descriptor

in the spatial domain [70]. It describes the intensity difference between

a pixel and its local circular neighborhood, denoted by pP,Rq, where P

defines the number of pixels evenly distributed on the circular neighbor-

hood with radius R. To ensure robustness against intensity changes, LBP

employs the signs of the differences instead of the exact values to form
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unique binary codes for the description of local texture patterns.

1.2. CLBP: The completed local binary pattern (CLBP) is an LBP variant

that adds the intensity of the neighbors and the center pixel to the standard

LBP feature representation.

1.3. M-CLBP: The multi-scale CLBP (M-CLBP) combines CLBP features

computed at different radii, making it a multi-scale version of the CLBP.

1.4. ELBP: Unlike the LBP that computes features based on neighbor-center

difference, the extended LBP (ELBP) computed features based on center

intensity, neighbor intensity, and radial difference. Unlike the M-CLBP

that considers each scale separately, ELBP incorporates the correlation of

the features at different scales.

1.5. CLDP: The completed local derivative pattern (CLDP) adds cross-scale

correlation to the CLBP implementation through radial sign difference.

1.6. LRI: Although LBP and its varients implicitly capture the edge informa-

tion, the local radius index (LRI) [69] provides a more explicit description

of the spatial distribution of edges. It achieves this by characterizing tex-

ture patterns using the local distribution of distances between adjacent

edges along a particular angle.

1.7. GLCM: Attributes based on the grey level co-occurrence matrix (GLCM)

have been widely accepted as useful tools for texture analysis since they

were proposed four decades ago [68]. The have also been widely adopted

in seismic data processing and interpretation. The GLCM is a matrix that

describes the co-occurrence pattern between gray levels of two neighboring

pixels along a particular direction in an image. In essence, it represents a

two-dimensional histogram that approximates the joint probability distri-

bution of the adjacent gray values. It can capture textural patterns for the
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selected neighborhood along the prescribed direction. For example, high

values away from the diagonal in a GLCM reveal sharp changes in gray

level, whereas high values close to the diagonal indicate small variations.

2. Multiresolution features

2.1. Discrete wavelet: The discrete wavelet transform (DWT) is an orthonor-

mal transform that represents an image using a dyadic dilation and trans-

lation of a function called the mother wavelet. The mother wavelet is

localized in both the spatial and frequency domains. Different wavelets

have been proposed and studied extensively such as Haar, Daubechies,

symlet, Mexican hat, coiflet wavelets and many others [86]. The first level

discrete wavelet coefficients of an image I are obtained by filtering along

the horizontal direction with low pass and high pass filters to obtain IL and

IH , respectively. Then, ÎL and ÎH are filtered along the vertical direction

with the same filters and decimated by a factor of 2 to obtain detail images

IHH , ILH , and IHL, and an approximation image ILL as shown in Figure

3.3a. For more levels, the same process is repeated on the approximation

image ILL. An example of a 2-level DWT of a seismic image is shown in

Figure3.3b.
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Figure 3.3: (a) Block diagram of a 2D 1-level DWT decomposition. (b) A 2-level
DWT of a seismic image.

2.2. Stationary wavelet: The stationary wavelet transform (SWT) is an im-

proved version of DWT that overcomes its lack of shift-invariance. The

SWT can be found in the literature with different names like the shift-

invariant DWT (SIDWT)[87], the undecimated DWT (UDWT)[88], the

overcomplete DWT (ODWT)[89], and the redundant DWT (RDWT)[90].

One way to implement the SWT is to remove the downsampling step from

the DWT and, instead, upsample the filters in each step as shown in Fig-

ure 3.4a where h2H and h2L are upsampled versions of hH and hL, respec-

tively. This slight modification makes SWT a shift-invariant, but redun-

dant, transform. An example of a 3-level SWT of a seismic section is shown

in Figure 3.4b.
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Figure 3.4: (a) 2-level decomposition for 2D SWT. (b) 3-level SWT of a seismic image.

2.3. Gabor filter: The Gabor filter is a linear filter whose impulse response

is the product of a plane wave with a Gaussian kernel. The Gabor filter

is frequently used to model the simple cell receptive fields in the human

visual system [74]. Thus, it has been utilized to characterize natural and

texture images especially for applications such as edge detection [91] and

segmentation[92]. The impulse response of a Gabor filter centered at the

origin with orientation θ and a radial frequency ω is given by:

Hpx, y, ω, θq “ exp

"

´
x2 ` y2

2σ2

*

exp ti2πω px cos θ ` y sin θqu (3.3)

Figure 3.5 shows a 2-scale and 4-orientation Gabor filter bank.
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Figure 3.5: Gabor filters at two different scales and four different orientations.

2.4. Steerable pyramid: The steerable pyramid is a multiscale image decom-

position developed by Simoncelli et al. [17]. As shown in Figure 3.6, the

image is first decomposed into highpass and lowpass subbands and then

the lowpass band is further decomposed into bandpass subbands of dif-

ferent orientations and a lowpass subband. The lowpass subband is then

subsampled and passed as an input to a similar decomposition to obtain

details at other scales. The bandpass filters capture details at different

orientations and the subsampling allows it to capture details of different

scales.
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Texture attributes for description of migrated seismic volumes: a comparative study

METHODS

Frequency domain techniques

Steerable pyramid (SP)

SP is a multiresolution image representation developed by Si-
moncelli et al. (1992). As illustrated in Figure 1, the technique
first decomposes a given image into a highpass subband and
a lowpass subband. Then it processes the lowpass subband,
obtaining a series of bandpass subbands and another lowpass
subband. The bandpass subbands reveal image details along
various orientations. The newly obtained lowpass subband is
subsampled and then further processed in a similar manner to
yield orientational details at a coarser spatial scale. Such recur-
sive decomposition eventually yields a pyramid of subbands,
representing the original image along different orientations at
different scales. Histograms of the coefficients from the de-
composition can be established for each subband, which cap-
ture the statistical characteristics of the coefficients. The his-
tograms are further examined for retrieval purpose, details of
which will be discussed later in the experiments.

HP Filter

LP Filter BP Filter 1

BP Filter 2

BP Filter N

LP Filter 

Scale Level 2 
Decomposition 

Scale Level K
Decomposition

Image HP Subband

BP Subband

BP Subband

BP Subband

2

Final LP 
Subband

Scale Level 1 
Decomposition

Figure 1: Illustration of a SP decomposition with K scales and
N orientations at each scale. In this paper, we set K = 4 and
N = 8.

Curvelet transform (CT)

CT is also a directional multiscale decomposition, first intro-
duced by Candés et al. (2005). It works by first applying the
two-dimensional fast Fourier transform (2-D FFT) to an im-
age, and then dividing the frequency plane into small sections
(or wedges) corresponding to multiple scales and orientations.
The total number of scales in the curvelet tiling, J, is depen-
dent on the size of the image as

J = dlog2 min(N1,N2)�3e, (1)

where N1 and N2 are the image height and width in pixels,
respectively; and d·e is the ceiling function. The number of
orientations at scale j � 1, K( j), is given by:

K( j) = 16⇥2d( j�1)/2e. (2)

Once the frequency plane is partitioned (see Figure 2 for an
example), curvelet coefficients are generated by applying the

Figure 2: Curvelet tiling of the frequency spectrum showing
different scales and orientations; adapted from Candés et al.
(2005).

2-D IFFT to each wedge (after smoothing). Since the FFT of
real images is symmetric around the origin, only two quadrants
of the Fourier spectrum are necessary for obtaining the coeffi-
cients. Again, histograms are formed for coefficients in each
subband and used in the retrieval experiments.

Space domain techniques

Local binary pattern (LBP)

LBP (Ojala et al., 2002) describes the local spatial structure of
textures by thresholding the neighborhood of each pixel and
defining the result as a binary number. Mathematically, the
LBP operator is expressed as

LBPR,P [ic, jc] =
P�1X

p=0

s
�

Ic � Ip
�
·2p, (3)

where P represents the number of points in the neighborhood
with radius R, [ic, jc] indicates the coordinates of the center
point, and Ic and Ip denote the intensity of the center and
neighboring points, respectively. Function s(·) has a value
of 1 if Ic � Ip. Otherwise, the value of s is 0. Since the
LBP operator encodes only the signs of the difference between
the center and neighboring points, however, the information
of difference magnitude has been discarded. To overcome
this problem, Guo and Zhang (2010) proposed completed LBP
(CLBP), where three components are considered as follows.
First, CLBP C encodes the center pixel intensity into a binary
number. Then, CLBP S and CLBP M are generated using the
difference between the center and its neighbors, with the for-
mer encodes the sign of the difference and the latter the mag-
nitude. Histograms of the three components are concatenated
into one feature vector to describe the local texture pattern. In
fact, CLBP S is exactly the same as LBP. In this paper, we use
CLBP instead of the original LBP. We set P = 20 and R = 3.

Local radius index (LRI)

LRI characterizes a texture pattern by the distribution of dis-
tances between adjacent edges along a certain orientation (Zhai
et al., 2013). A local index can be computed for each image
pixel in two different ways, resulting in two variations of LRI.
For LRI-A, inter-edge distance (i.e., width of adjacent smooth
regions) in each given direction is calculated; while for LRI-
D, the distance from pixels to the nearest edge (i.e., boundary
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(a)

Laplacian Pyramid Dyadic QMF/Wavelet Steerable Pyramid
self-inverting (tight frame) no yes yes
overcompleteness 4/3 1 4k/3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with k = 4. Frequency axes range from
−π to π. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

separable. Figure 1 contains a diagram of the ide-
alized frequency response of the subbands, for
k = 4. We write the Fourier magnitude of the ith
oriented bandpass filter in polar-separable form:

Bi(ω⃗) = A(θ − θi)B(ω),

where θ = tan−1(ωy/ωx), θi = 2π
k and ω = |ω⃗|.

Below, we describe the constraints on the two
components A(θ) and B(ω).

1. ANGULAR DECOMPOSITION

The angular portion of the decomposition, A(θ),
is determined by the desired derivative order. A
directional derivative operation in the spatial do-
main corresponds to multiplication by a linear
ramp function in the Fourier domain, which we
rewrite in polar coordinates as follows:

−jωx = −jω cos(θ)

(note that we have described a derivative opera-
tor in the x direction). We ignore the imaginary
constant, and the factor of ω, which is absorbed
into the radial portion of the function. The rele-
vant angular portion of the first derivative oper-
ator (in the x direction) is thus cos(θ).

Higher-order directional derivatives correspond
to multiplication in the Fourier domain by the

ramp raised to a power, and thus the angular
portion of the filter is cos(θ)N for an N th-order
directional derivative. Knuttson and Granlund
have also developed polar-separable filters with
such angular components [10]. The steerability
of such functions has been discussed in our pre-
vious work [5, 6].

2. RADIAL DECOMPOSITION

The radial function, B(ω), is constrained by both
the desire to build the decomposition recursively
(i.e., using a “pyramid” algorithm), and the need
to prevent aliasing from occurring during sub-
sampling operations. The recursive system dia-
gram for B(ω) is given in figure 23.

The filters H0(ω) and L0(ω) are necessary for pre-
processing the image in preparation for the recur-
sion. The recursive portion of the diagram corre-
sponds to the subsystem contained in the dashed
box. This subsystem decomposes a signal into
two portions (lowpass and highpass). The low-
pass portion is subsampled, and the recursion is
performed by repeatedly applying the recursive
transformation to the lowpass signal.

The constraints on the filters in the diagram are
as follows:

1. Bandlimiting (to prevent aliasing in the sub-
sampling operation):

L1(ω) = 0 for|ω| > π/2.

2. Flat System Response:

|H0(ω)|2 + |L0(ω)|2
[
|L1(ω)|2 + |B(ω)|2

]
= 1.

3. Recursion:

|L1(ω/2)|2 = |L1(ω/2)|2
[
|L1(ω)|2 + |B(ω)|2

]
.

Typically, we choose L0(ω) = L1(ω/2), so that
the initial lowpass shape is the same as that used
within the recursion. An idealized illustration of
filters that satisfy these constraints is given in fig-
ure 3. Note that L1(ω) is strictly bandlimited, and
B(ω) is power-complementary.

3This system diagram is modified from that of [6].

2

(b)

Figure 3.6: (a) Steerable pyramid filter bank and (b) Steerable pyramid spectral
decomposition with 4 orientations and 4 scales. Figure adapted from [17] with per-
mission. ©(1995) IEEE.

2.5. Contourlets: The contourlet transform [75] is a separable multiscale di-

rectional transform that employs iterated filter banks. The separability

property makes the contourlet transform more efficient and faster to com-

pute than other non-separable transforms. The contourlet transform is

constructed based on the Laplacian pyramid [93]. The lowpass output of

the pyramid is further decomposed with a biorthogonal wavelet. A direc-

tional filter bank initially proposed by [94] is then applied to each image

output of the Laplacian pyramid. Figure 3.7 shows filter bank used in the

contourlet transform.

50



Figure 3.7: The contourlet filter bank (adapted from [75].)

2.6. Non-subsampled contourlets: The nonsubsampled contourlet trans-

form is a translation-invariant version of the contourlet transform that

was developed by [76]. The decomposition has two components. The first

component is the nonsubsampled pyramid that performs a multiscale de-

composition. The second component is the directional filter bank that

performs directional decomposition. The nonsubsampled directional filter

banks lead to better frequency localization when compared to the stan-

dard contourlet transform. Similar to the improvement of the SWT on

the DWT, the nonsubsampled contourlet transform improves on the con-

tourlet transform by being fully shift-invariant, at the cost of increased

redundancy. Figure 3.8 illustrates the non-subsampled contourlet trans-

form.
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Figure 3.8: The nonsubsampled countourlet filter bank. (adapter from [95])

2.7. Curvelets: The curvelet transform is a directional multiscale decomposi-

tion. Curvelet frames have been shown to represent images with geomet-

rically regular edges (such as seismic images) more compactly than other

traditional multiscale representations [32]. It has also been widely used in

various seismic processing and interpretation problems. Therefore would

be a good multiscale feature representation to investigate for this applica-

tion. For a more detailed description of the curvelet transform, see Section

2.3.

3.4 Results

We use our proposed framework to perform a labeling experiment to compare the

structural interpretation results of the various texture and multiresolution features

highlighted in the previous section. For this experiment, we use a subset of the pub-

licly available LANDMASS-1 dataset [46], to form the training dataset. LANDMASS-

1 consists of more than 17,000 seismic images of size 99ˆ99 pixels extracted from the

Netherlands F3 block dataset [3]. These images contain various subsurface structures
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such as horizons, chaotic regions, faults, and salt domes. Since not all the images

in LANDMASS-1 are suitable for our labeling task, we use the similarity-based

retrieval method explained in the previous chapter to retrieve images that have the

most similarity to each of the exemplar images shown in Figure 2.9. We assign these

images to four classes: chaotic, faults, salt domes, and an other class that would

contain all the other images that contain structures not in the first three, such as clear

horizons and sigmoidal structures. The other class serves the purpose of showing neg-

ative examples of structures that do not belong to the first three classes. Although

the dataset contains these specific structures, our proposed labeling framework can

be extended to other seismic structures as well. Overall, we retrieve 1000 images for

the other class, 1500 for salt domes, and 500 each for chaotic, and faults.

To objectively compare the results, we use a manually annotated seismic inline

from the Netherlands F3 block dataset. Namely, we use seismic inline #380 labeled

with regions that contain the chaotic, faults, and salt dome structures. These

structures correspond to the blue, green, and red regions shown in Figure 3.2(b). The

quantitative labeling results using our framework for various feature representations is

summarized in Table 3.1. The evaluation metrics that we use are detailed in Appendix

A.3. In addition, Figure 3.9 shows the labeling results for the various texture feature

representations, while Figure 3.10 shows the results for the various multiresolution

feature representation.

The results in Table 3.1 show that the GLCM and the ELBP features are the best

performing texture features. It is not very surprising that the GLCM performs well

since it has been widely used in seismic interpretation [98, 99, 100]. However, the

ELBP shows more promise as it has slightly outperformed the GLCM. By observing

the results in Figure 3.9, we note that many feature representations label the entire

horizons where the faults occur as belonging to the faults class. The ELBP and

GLCM are notable exceptions. However, the model trained with GLCM features
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Feature PA MIU FWIU

T
ex

tu
re

LBP 0.649 0.360 0.540

CLBP 0.768 0.483 0.668

M-CLBP 0.765 0.486 0.663

ELBP 0.792 0.454 0.692

CLDP 0.724 0.457 0.615

LRI 0.712 0.466 0.614

GLCM 0.779 0.483 0.688

Mean texture features 0.757 0.472 0.657

M
u

lt
ir

es
ol

u
ti

o
n

Discrete wavelet (non dir.) 0.599 0.362 0.486

Stationary wavelet (non dir.) 0.570 0.348 0.452

Gabor filters 0.759 0.478 0.664

Steerable pyramid 0.789 0.498 0.691

Contourlet 0.769 0.492 0.667

Non-subsampled countourlet 0.738 0.455 0.635

Curvelet 0.820 0.550 0.725

Mean directional multiresolution features 0.775 0.4946 0.6764

Table 3.1: Evaluation of the labeling performance for various texture and multireso-
lution features.

makes a similar mistake with the salt dome class, where the strong seismic reflections

around the salt dome boundary are mistaken for the salt body.

As for the multiresolution feature representations, Table 3.1 shows the superiority

of the directional multiresolution features over the non-directional ones (discrete and

stationary wavelet) by a significant margin. This is expected since seismic images

contain highly directional features, that cannot be captured by non-directional rep-

resentations. The curvelet features outperform all the other feature representations

on all the metrics we measured. This is not unexpected since the curvelet transform

has been used very successfully in a wide range of seismic interpretation and pro-

cessing applications [26, 34, 36, 35, 101, 102, 103, 104]. The remaining texture and

directional multiresolution features perform comparably well, but not to the level of

the curvelet features. On average, directional multiresolution features perform better
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Table 3.2: The percentage of pixels from each class in the manually labeled inline #
380.

other chaotic faults salt dome

79.74 % 9.38 % 4.49 % 6.39 %

than the texture features achieving slightly more than 2% FWIU score higher than

their texture counterparts.

In terms of pixel accuracy, which gives no regard to individual classes, the curvelet

features outperform all the other features with a significant margin. Table 3.2 shows

the percentage of pixels that belong to every class in inline # 380. The MIU metric

which normalizes the results of every class by its size shows an even more substantial

advantage for the curvelets over other feature representations. One reason why it

performs very well can be the curvelet transform’s effectiveness in representing curve-

like features which constitutes a large portion of the seismic section.

It is important to note that these results were obtained on a single seismic inline,

and therefore, these results will differ if other seismic sections were used. However, it

is not difficult to conclude that given the computational advantages of multiresolution

feature representations, they are the preferred to the computationally demanding tex-

ture feature representations. This computational advantage is especially evident in

the case of the curvelet transform, where the fast discrete curvelet transform (FDCT)

is computationally efficient and seems to outperform all the other texture and mul-

tiresolution feature representations that we have tested.

3.5 Summary

In summary, this chapter investigates the use of image-level labels to train a weakly-

supervised classifier for semantically labeling seismic structures. We introduced a

framework that extracts features from images that were assigned image-level labels,

and then use these features to train a classifier. During the prediction stage, each
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seismic section is over-segmented into a large number of superpixels that contain

similar textures. Features from these superpixels are then extracted and classified.

The resulting label is then propagated to all the pixels in the superpixel. This process

is done for all the superpixels in every section and repeated for every section in the

seismic volume. We studied various feature representations, both texture features that

are computed in the spatial domain, and multiresolution features that are computed in

the frequency domain. We have compared the results of labeling a seismic inline using

different feature representations, and we have concluded that the curvelet features

seem to outperform the other representations by a substantial margin.

We have shown that image-level labels can indeed be used to obtain a pixel-

level classification of seismic structures. However, this approach does have several

disadvantages that limit its potential. First, the framework we proposed assigns

class labels to superpixels, not pixels. This allows the results to be more spatially

coherent and reduces false classifications; however, this also reduces the resolution of

the model output to the scale of the individual superpixels. This might be acceptable

based on the application, but ideally, we would like to achieve true pixel-level labeling.

Second, and more importantly, since image-level labels do not encode the location of

the target class, the classifier might not correctly learn features that are associated

with a given structure. This is especially true for structures that are small in scale,

or are subtle in nature such as the faults structures. For example, a large number

of fault images in the training dataset have strong seismic reflections (e.g., see Figure

2.10). These strong reflections are a much more dominant feature than the faults

themselves, making the classifier confuse images with strong seismic reflections as

belonging to the faults class. This confusion is not only a shortcoming of the

feature representations but, more importantly, due to the nature of the labels that

were used in the training. Every image was assigned an image-level label which in

turn leads the classifier to associate the strong features present in each image with
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its image-level label. This is one of the main drawbacks of using image-level labels

to train a semantic segmentation model. While we do not have access to pixel-level

training labels, this does drive the question of whether these image-level labels can be

projected somehow to pixel-level labels that encode the locations of the target classes

in the training images, and wether models trained using these projected pixel-level

labels would perform better compared to those trained using image-level labels.

In the next chapter, we present a novel label-mapping algorithm that projects

image-level labels into pixel-level labels. Furthermore, in Chapter 5 we show how

a deep learning model can be trained using these projected pixel-level labels and

we compare the resulting pixel-level annotations with the ones we achieved in this

chapter.
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(a) Original seismic section (b) Manually annotated

(c) LBP [70] (d) CLBP [71]

(e) MCLBP [70] (f) ELBP [72]

(g) CLDP[96] (h) LRI [69]

(i) GLCM [97]

Figure 3.9: Results of our image-level labeling framework on inline #380 of the
Netherlands F3 block using texture features. The colors blue, green, and red cor-
respond to the chaotic, faults and salt dome classes respectively.
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(a) Original seismic section (b) Manually annotated

(c) Discrete Wavelet [86] (d) Stationary Wavelet [87]

(e) Gabor Filters [74] (f) Steerable Pyramid [105]

(g) Contourlet[75] (h) Non-subsampled Contourlet [95]

(i) Curvelet [32]

Figure 3.10: Results of our image-level labeling framework on inline #380 of the
Netherlands F3 block using multiresolution features. The colors blue, green, and red
correspond to the chaotic, faults and salt dome classes respectively.
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CHAPTER 4

WEAKLY-SUPERVISED LABEL MAPPING

4.1 Overview

While image-level labels are easy to obtain, learning to label structures in seismic vol-

umes using only image-level labels is very challenging as we have seen in Chapter 3.

One of the main challenges when training semantic segmentation models using image-

level labels is the inherent tradeoff between localization and classification accuracy.

Models that were trained to classify on the pixel-level (high localization accuracy) will

invariably have poor classification accuracy, and the only way to obtain higher classifi-

cation accuracy is to sacrifice the localization accuracy (i.e., the final resolution of the

output predictions). The method we proposed in Chapter 3 attempted to navigate

this tradeoff by having a somewhat moderate localization accuracy (superpixel-level)

and a similarly moderate classification accuracy. However, it is fair to assume that

if we decouple this localization/classification problem into two separate problems, we

can achieve both higher localization and higher classification accuracy.

In this chapter, we address the localization accuracy problem by presenting a

weakly-supervised label mapping algorithm that transforms image-level labels into

pixel-level labels that encode the locations of the various target classes within each

image in our training set. The classification accuracy problem is addressed in Chapter

5.

Once image-level labels are obtained, we can learn features that are common

between images from each class. These class-specific features are then used to identify

the pixel-level labels for each pixel in the training images. Our weakly-supervised label

mapping approach is based on non-negative matrix factorization. This mapping is a
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weakly supervised one since every image xi P Rnˆm
` has only one label as opposed to

nˆm labels. The remainder of this chapter is organized as follows. Section 4.2 reviews

the relevant literature and summarizes the main approaches and their advantages

and disadvantages. Section 4.3 introduces non-negative matrix factorization and the

notation that will be used throughout the remainder of this chapter. Section 4.4

introduces the constraints that we impose on our NMF formulation, and section 4.5

explains how our formulated optimization problem is solved. Section 4.6 then explains

how the final results are obtained, and section 4.7 explores the results of our label

mapping algorithm. Finally, section 4.8 summarizes and concludes this chapter.

4.2 Background

The problem of assigning semantic class labels to pixels is known as semantic segmen-

tation. This problem, sometimes known as scene labeling, scene parsing, or semantic

labeling, is a major computer vision research problem. The importance of seman-

tic segmentation is that it paves the way towards higher-level image understanding,

an essential computer vision task, with wide-ranging applications from image search

engines [106] to autonomous cars [10] and augmented reality [107]. Figure 4.1 demon-

strates the goal of semantic segmentation compared to other common computer vision

tasks such as image classification, and object detection. Mapping image-level labels

to pixel-level labels is a form of semantic segmentation, and therefore, for the sake of

generality, we do not make any distinction between the two in this literature review.

The literature on weakly-supervised semantic segmentation in recent years can be

divided into two main approaches. The first approach is based on the use of convo-

lutional neural networks (CNNs). These techniques are mainly driven by the widely

successful application of CNNs to many computer vision tasks. CNNs typically have

a very large number of trainable free parameters. Therefore the main challenge with

weakly-supervised CNN based techniques is to find ways to enlarge the training set,
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1

A Review on Deep Learning Techniques
Applied to Semantic Segmentation

A. Garcia-Garcia, S. Orts-Escolano, S.O. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez

Abstract—Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers.
Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even
virtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every
field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a
review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology
of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers
decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their
contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in
which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw
our own conclusions about the state of the art of semantic segmentation using deep learning techniques.

Index Terms—Semantic Segmentation, Deep Learning, Scene Labeling, Object Segmentation

F

1 INTRODUCTION

NOWADAYS, semantic segmentation – applied to still
2D images, video, and even 3D or volumetric data

– is one of the key problems in the field of computer
vision. Looking at the big picture, semantic segmentation
is one of the high-level task that paves the way towards
complete scene understanding. The importance of scene
understanding as a core computer vision problem is high-
lighted by the fact that an increasing number of applications
nourish from inferring knowledge from imagery. Some of
those applications include autonomous driving [1] [2] [3],
human-machine interaction [4], computational photography
[5], image search engines [6], and augmented reality to name
a few. Such problem has been addressed in the past using
various traditional computer vision and machine learning
techniques. Despite the popularity of those kind of methods,
the deep learning revolution has turned the tables so that
many computer vision problems – semantic segmentation
among them – are being tackled using deep architectures,
usually Convolutional Neural Networks (CNNs) [7] [8] [9]
[10] [11], which are surpassing other approaches by a large
margin in terms of accuracy and sometimes even efficiency.
However, deep learning is far from the maturity achieved
by other old-established branches of computer vision and
machine learning. Because of that, there is a lack of unifying
works and state of the art reviews. The ever-changing state
of the field makes initiation difficult and keeping up with
its evolution pace is an incredibly time-consuming task due
to the sheer amount of new literature being produced. This
makes it hard to keep track of the works dealing with se-

• A. Garcia-Garcia, S.O. Oprea, V. Villena-Martinez, and J. Garcia-
Rodriguez are with the Department of Computer Technology, University
of Alicante, Spain.
E-mail: {agarcia, soprea, vvillena, jgarcia}@dtic.ua.es

• S. Orts-Escolano is with the Department of Computer Science and
Artificial Intelligence, Universit of Alicante, Spain.
E-mail: sorts@ua.es.

mantic segmentation and properly interpret their proposals,
prune subpar approaches, and validate results.

To the best of our knowledge, this is the first review to
focus explicitly on deep learning for semantic segmentation.
Various semantic segmentation surveys already exist such
as the works by Zhu et al. [12] and Thoma [13], which do
a great work summarizing and classifying existing meth-
ods, discussing datasets and metrics, and providing design
choices for future research directions. However, they lack
some of the most recent datasets, they do not analyze
frameworks, and none of them provide details about deep
learning techniques. Because of that, we consider our work
to be novel and helpful thus making it a significant contri-
bution for the research community.

Fig. 1: Evolution of object recognition or scene understand-
ing from coarse-grained to fine-grained inference: classifica-
tion, detection or localization, semantic segmentation, and
instance segmentation.
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Figure 4.1: A comparison of various scene understanding tasks in computer vision,
from coarse (image classification) to fine (instance segmentation). Figure adapted
from [108] with permission. All rights reserved ©2017 Elsevier.

find auxiliary sources of supervision, or restrict the parameter space of the network.

The second approach attempts to overcome this challenge by using matrix completion

or factorization techniques that do not require large amounts of data. Methods that

currently use this approach are rather limited in number and typically do not provide

good spatial resolution.

In the following two subsections, we review the literature on weakly-supervised

semantic segmentation using CNNs (Section 4.2.1) and matrix completion and fac-

torization (Section 4.2.2). Then in Section 4.2.3, we summarize the two approaches

and analyse their main advantages and disadvantages.

4.2.1 Convolutional Neural Networks

In recent years, there has been a considerable amount of research on using CNNs

for semantic segmentation [108]. Most of the proposed methods take advantage of
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large-scale fully-annotated image datasets and therefore allow for powerful machine

learning algorithms to be trained. In many cases, however, fully-annotated data is not

available and can be challenging to obtain. In this case, weakly-supervised techniques

for semantic segmentation can be used. These techniques use weak labels that are less

costly and much easier to obtain. Recently, many weakly-supervised labeling methods

based on CNNs have been proposed. Some of these methods achieved comparable

performance to fully-supervised methods on standard benchmarks. In this subsection,

we review both strongly- and weakly-supervised techniques that are based on CNNs.

A major hurdle for the successful end-to-end application of fully-supervised CNNs

to semantic segmentation was what seemed like a trade-off between classification and

localization accuracy. Deeper networks that have multiple pooling layers have proven

to be the most successful models in image classification tasks. However, their large

receptive fields and increased spatial invariance (due to pooling and convolutional

layers) make it difficult to infer the locations of various objects within the image using

the output scores at the upper layers of the network. Many researchers attempted

to overcome this hurdle by using various pre- or post-processing techniques. For

example, Mostajabi et al. proposed representing small image superpixels using a

combination of local, regional, and global features obtained from a CNN and then

classifying them using a shallow neural network. Others proposed using probabilistic

graphical models such as fully-connected conditional random fields (CRFs)[109] to

process the coarse score maps from CNNs to finer more accurate ones [110, 111].

In addition, Yu and Koltun [112] have investigated using methods such as dilated

convolutions that aggregate multi-scale contextual information while preventing the

network from losing spatial resolution as it got deeper, while others provide multiple

downsampled versions of the image as input to the network and then combine the

multiscale predictions into a single output map [113, 114, 115].

One of the early milestones towards fully-supervised end-to-end semantic segmen-
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reinforce merging object segmentation and scene parsing as
unified pixelwise prediction.

In the next section, we review related work on deep
classification nets, FCNs, recent approaches to semantic seg-
mentation using convnets, and extensions to FCNs. The fol-
lowing sections explain FCN design, introduce our
architecture with in-network upsampling and skip layers,
and describe our experimental framework. Next, we demon-
strate improved accuracy on PASCALVOC 2011-2, NYUDv2,
SIFT Flow, and PASCAL-Context. Finally, we analyze design
choices, examine what cues can be learned by an FCN, and
calculate recognition bounds for semantic segmentation.

2 RELATED WORK

Our approach draws on recent successes of deep nets for
image classification [1], [2], [3] and transfer learning [18],
[19]. Transfer was first demonstrated on various visual rec-
ognition tasks [18], [19], then on detection, and on both
instance and semantic segmentation in hybrid proposal-
classifier models [5], [14], [15]. We now re-architect and
fine-tune classification nets to direct, dense prediction of
semantic segmentation. We chart the space of FCNs and
relate prior models both historical and recent.

Fully convolutional networks. To our knowledge, the
idea of extending a convnet to arbitrary-sized inputs first
appeared in Matan et al. [20], which extended the classic
LeNet [21] to recognize strings of digits. Because their net
was limited to one-dimensional input strings, Matan et al.
used Viterbi decoding to obtain their outputs. Wolf and
Platt [22] expand convnet outputs to two-dimensional maps
of detection scores for the four corners of postal address
blocks. Both of these historical works do inference and
learning fully convolutionally for detection. Ning et al. [10]
define a convnet for coarse multiclass segmentation of C.
elegans tissues with fully convolutional inference.

Fully convolutional computation has also been exploited in
the present era of many-layered nets. Sliding window detec-
tion by Sermanet et al. [4], semantic segmentation by Pinheiro
and Collobert [13], and image restoration by Eigen et al. [23]
do fully convolutional inference. Fully convolutional training
is rare, but used effectively by Tompson et al. [24] to learn an
end-to-end part detector and spatial model for pose estima-
tion, although they do not exposit on or analyze thismethod.

Dense prediction with convnets. Several recent works
have applied convnets to dense prediction problems,
including semantic segmentation by Ning et al. [10], Farabet

et al. [12], and Pinheiro and Collobert [13]; boundary predic-
tion for electron microscopy by Ciresan et al. [11] and for
natural images by a hybrid convnet/nearest neighbor
model by Ganin and Lempitsky [16]; and image restoration
and depth estimation by Eigen et al. [23], [25]. Common ele-
ments of these approaches include

� small models restricting capacity and receptive fields;
� patchwise training [10], [11], [12], [13], [16];
� refinement by superpixel projection, random field

regularization, filtering, or local classification [11],
[12], [16];

� “interlacing” to obtain dense output [4], [13], [16];
� multi-scale pyramid processing [12], [13], [16];
� saturating tanh nonlinearities [12], [13], [23]; and
� ensembles [11], [16],

whereas our method does without this machinery. However, we
do study patchwise training (Section 3.4) and “shift-and-stitch”
dense output (Section 3.2) from the perspective of FCNs. We
also discuss in-network upsampling (Section 3.3), of which the
fully connected prediction by Eigen et al. [25] is a special case.

Unlike these existing methods, we adapt and extend
deep classification architectures, using image classification
as supervised pre-training, and fine-tune fully convolution-
ally to learn simply and efficiently from whole image inputs
and whole image ground thruths.

Hariharan et al. [14] and Gupta et al. [15] likewise adapt
deep classification nets to semantic segmentation, but do so
in hybrid proposal-classifier models. These approaches
fine-tune an R-CNN system [5] by sampling bounding
boxes and/or region proposals for detection, semantic seg-
mentation, and instance segmentation. Neither method is
learned end-to-end. They achieve the previous best segmen-
tation results on PASCAL VOC and NYUDv2 respectively,
so we directly compare our standalone, end-to-end FCN to
their semantic segmentation results in Section 5.

Combining feature hierarchies. We fuse features across
layers to define a nonlinear local-to-global representation
that we tune end-to-end. The Laplacian pyramid [26] is a
classic multi-scale representation made of fixed smoothing
and differencing. The jet of Koenderink and van Doorn [27]
is a rich, local feature defined by compositions of partial
derivatives. In the context of deep networks, Sermanet et al.
[28] fuse intermediate layers but discard resolution in doing
so. In contemporary work Hariharan et al. [29] and
Mostajabi et al. [30] also fuse multiple layers but do not
learn end-to-end and rely on fixed bottom-up grouping.

FCN extensions. Following the conference version of this
paper [17], FCNs have been extended to new tasks and data.
Tasks include region proposals [31], contour detection [32],
depth regression [33], optical flow [34], and weakly-super-
vised semantic segmentation [35], [36], [37], [38].

In addition, new works have improved the FCNs pre-
sented here to further advance the state-of-the-art in seman-
tic segmentation. The DeepLab models [39] raise output
resolution by dilated convolution and dense CRF inference.
The joint CRFasRNN [40] model is an end-to-end integra-
tion of the CRF for further improvement. ParseNet [41]
normalizes features for fusion and captures context with
global pooling. The “deconvolutional network” approach of
[42] restores resolution by proposals, stacks of learned

Fig. 1. Fully convolutional networks can efficiently learn to make dense
predictions for per-pixel tasks like semantic segmentation.
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Figure 4.2: An illustration of the fully convolutional network (FCN) architecture.
Reprinted, with permission from [116]. All rights reserved ©2016 IEEE.

tation using CNNs was the fully convolutional network (FCN) proposed by Long et al.

[116]. This work showed that it is possible to achieve good semantic segmentation re-

sults using a fully convolutional network (with no fully-connected layers), and no pre-

or post-processing steps. FCNs achieve this by replacing the fully-connected layers of

the CNN with convolutional layers that produce coarse feature maps. These coarse

feature maps are then upsampled, and concatenated with the scores from interme-

diate feature maps to form a more detailed output. Due to their fully-convolutional

architecture, FCNs can be applied to arbitrary sized inputs, and therefore do not

require the input image to be resized as in other methods. Figure 4.2 illustrates the

FCN architecture.

Another influential fully-supervised end-to-end method was DeconvNet proposed

by Noh et al.[117, 118]. As opposed to the upsampling layers in FCN, this method

uses a symmetric encoder-decoder style network composed of stacks of convolutional

and pooling layers in the encoder, and stacks of deconvolutional and unpooling lay-

ers in the decoder that mirror the encoders architecture. The role of the encoder

can be seen as doing object detection and classification, while the decoder is used

for accurate localization of these objects. Several encoder-decoder style CNNs for

64



Figure 4.3: An illustration of the difference between the outputs of a) FCN and b)
DeconvNet. The DeconvNet activation maps are more precise and contain far more
fine details compared to FCN. Reprinted, with permission from [117]. All rights
reserved ©2015 IEEE.

semantic segmentation were proposed around the same time. While DeconvNet [117]

was designed to be applied on region proposals, SegNet [119] has an almost identical

architecture but is applied directly on the input image. U-Net [120] improves on the

base encoder-decoder architecture by concatenating the encoder feature maps with

the corresponding decoder feature maps. This greatly improves how the network is

trained since the backpropagated gradients can ‘skip’ many convolution layers using

the concatenated features. Such encoder-decoder style networks can achieve finer and

more accurate results than those of the FCN. Figure 4.3 shows examples of output

feature maps from FCN and DeconvNet for two different classes. It is clearly evident

that encoder-decoder style networks, such as DeconvNet, lead to better semantic seg-

mentation results than FCN-like networks. However, both require vast amounts of

fully-labeled1 images to fully train the network.

1We use the terms ‘strongly-labeled’ and ‘fully-labeled’ interchangeably.
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Yet, obtaining vast amounts of fully-labeled data is a very costly task. Moti-

vated by this problem, there has been considerable interest in CNN-based techniques

that only require weak supervision. We briefly survey the main approaches in this

area; however, we limit our scope to methods that use image-level labels as their

primary form of weak supervision. Using image-level labels for semantic segmen-

tation is challenging due to the missing spatial information for each label. Some

researchers formulate this problem as a multiple instance learning (MIL) problem.

MIL is a formulation of weakly-supervised learning where training instances are ar-

ranged in sets, called “bags”, and training labels are provided for entire bags and

not instances. For semantic segmentation, the instances are often pixels or super-

pixels, and the bags are images. Towards this end, several MIL approaches have

been proposed [121, 122, 123, 124]. However, some of these methods are not trained

end-to-end and require multiple forward passes to localize single objects, making it

difficult to scale them to large datasets, such as large seismic volumes. Alternatively,

other methods have been proposed that use a recursive refinement procedure based

on expectation-maximization, where the pixel-level labels are predicted, and then

used as new ground truth annotations to update the model [125, 126, 127]. Also,

others have proposed using superpixels to constrain the pixel-level labels to neighbor-

hoods of pixels that are visually similar [122, 128], or exploit side-information such

as saliency maps that highlight salient objects in images [126, 129, 130]. Oquab et

al. [131] proposed an approach for discriminative localization using CNNs based on

global max pooling that can localize objects in a single forward pass, by inspecting

the contribution of each hidden unit in the network to the final output class. Zhou et

al. [132] proposed a similar approach only using global average pooling, and showed

that while max pooling performs better for classification tasks, average pooling leads

to better results for localization. Furthermore, others have proposed masking regions

within the image, and studying the response of the network to identify which regions
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cause the maximum activation [133, 134]. However, these methods were proposed for

object localization where the goal is to locate the coordinates of an object within an

image. These methods do not perform well on the more difficult problem of semantic

segmentation, where the goal is to classify each pixel to the class it belongs to, even

if the class was not provided as an image-level label.

Despite the success of CNN-based methods—both fully- and weakly-supervised—in

semantic segmentation tasks, the CNN-based methods we reviewed above have sev-

eral limitations that prevent them from being readily applied to seismic data. First,

all of these methods initialize their models with the weights of fully-supervised net-

works trained on the ImageNet dataset [122, 123, 125, 126, 129]. While ImageNet

[135] has more than 14 million natural images, no such datasets exist for seismic in-

terpretation. In addition, many of these methods require large amounts of training

data; some methods use web crawled images from sites like flickr.com to augment

their training data [129], while others augment their data by using image-level labels

from massive datasets such as ImageNet [122]. Finally, despite their success, CNNs

are rarely used alone in weakly-supervised settings. Other techniques are typically

used to introduce an auxiliary source of supervision. For example, some methods use

smoothing priors [122, 128], region proposal [136], or saliency maps [126, 127, 129,

130]. Others [125, 129, 137, 130, 138] use fully-supervised CRFs to fine-tune their

output labels or use pixel-level labels for validation [121], something that would not

be possible in the absence of pixel-level labels. This can give these methods an unfair

advantage over other truly weakly-supervised techniques.

4.2.2 Matrix Completion and Factorization

For our seismic interpretation application, we do not have access to any pixel-level

annotations; therefore, using CNNs directly to obtain pixel-level labels is a rather un-

practical approach. In addition, all the existing pretrained networks for image classi-

67



fication, saliency detection, region proposals, and the fully-connected CRFs that the

previous techniques would use are pretrained on natural images. The features learned

by these models would not transfer well to a completely different visual domain such

as seismic interpretation. Other alternative techniques based on matrix completion

or factorization typically do not require large amounts of data and therefore are bet-

ter suited for our specific problem. In this subsection, we review the main matrix

completion or factorization based techniques that are related to our method.

Matrix completion is the task of predicting missing entries in partially-observed

matrices, while matrix factorization is the process of decomposing a matrix into the

product of two or more matrices. Matrix completion or factorization based techniques

perform very well in multi-label image classification tasks. This is the problem where

images, or superpixels, have many noisy labels assigned to them. Given enough images

with such labels, the goal is then to remove the noisy labels, and keep the correct

ones. For example, Cabral et al. [139] formulated the weakly-supervised multi-label

image classification problem as a convex low-rank matrix completion problem, and

devised algorithms to solve it.

Non-negative matrix factorization (NMF) [140, 141] is a widely used matrix fac-

torization technique that decomposes a non-negative matrix into two lower-rank non-

negative matrices. While NMF has been used for many wide-ranging applications,

its use in semantic segmentation has been very limited. Hong et al. [142] proposed

a framework for clustering images retrieved from a reference dataset using sparse

and orthogonal NMF. The images are initially represented by noisy labels based on

their similarity to labeled reference images; then NMF with sparsity and orthogo-

nality constraints is used to refine these noisy labels. Others have proposed using

graph-regularized matrix factorization based methods [143, 144] to infer the labels of

superpixels that were extracted using other techniques. They propose propagating

the noisy image-level labels to the various image segments, and then by solving a
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matrix factorization problem, they infer the correct label for each image segment.

Furthermore, [145] proposed a non-negative matrix co-factorization based approach

that jointly learns a discriminative dictionary and a linear classifier that classifies

features from superpixels into different classes. The previous three methods [143,

144, 145] can be viewed as weakly-supervised semantic segmentation techniques, but

their use of features extracted from superpixels limits the resolution of the resulting

labels to the size of the superpixels in the image. Yuan et al. [146] proposed an

unsupervised texture image segmentation algorithm using an NMF formulation on

the singular value decomposition (SVD) of features extracted from texture images.

All the matrix completion or factorization based techniques we have reviewed

attempt to do image (or superpixel) classification and not dense labeling on the

pixel level. To the best of our knowledge, no other work (besides ours) attempts

to map image-level labels to pixel-level labels using a matrix factorization formula-

tion. Our proposed weakly-supervised method for mapping our image-level labels into

pixel-level labels is based on non-negative matrix factorization (NMF). This method

does not require any additional training data nor does it require any pre- or post-

processing techniques, or auxiliary sources of supervision. And unlike some of the

weakly-supervised methods we reviewed previously, our method applies directly on

the pixel-level.

4.2.3 Summary

In summary, recent approaches to weakly-supervised semantic segmentation have

widely relied on CNNs. CNNs provide a powerful and robust feature representation

that has been driving the success of fully-supervised semantic segmentation models.

For the weakly-supervised setting, the primary challenge is to train these large CNN

models and to enable them to localize the various target classes. In the natural

image domain, the availability of large annotated datasets such as ImageNet, have
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greatly helped in this regard. All the weakly-supervised methods proposed in the

literature use models pretrained on ImageNet (usually for image classification, but

in some cases pretrained semantic segmentation models are used as well [124]). In

addition, many methods proposed in the literature use various techniques to enhance

the localization ability of these weakly-supervised models. A closer look reveals that

these techniques either rely on higher forms of weak supervision (such as bounding

boxes in the case of object proposals) or rely on pixel-level labels (such as in the

case of fully-connected CRFs). Also, some of these methods [125, 122, 128, 129]

use weak labels from other datasets or even from online image search engines such

as flickr.com to augment their training set. Table 4.1 shows a summary of the

main CNN-based techniques that have been proposed in the literature for weakly-

supervised semantic segmentation. The highlighted region of Table 4.1 shows various

techniques that these methods use to overcome weak supervision.

In the case of seismic interpretation, we do not have access to large annotated

datasets such as ImageNet, and cannot use websites such as flickr.com to augment

our training data. Similarly, all the auxiliary sources of supervision that the CNN-

based methods use cannot be directly applied to a completely different application

domain such as seismic images, and many of them rely on pixel-level labels. We also

do not have access to CNN models pretrained on seismic data, and therefore training

these large networks from scratch using a limited amount of annotated data will be a

challenging task and these models will be highly prone to over-fitting. Therefore we

opted for a matrix factorization based approach that works well for limited amounts

of annotated data.

There has been a few matrix completion or factorization based techniques pro-

posed in the literature for image classification and clustering. For weakly-supervised

semantic segmentation, a few methods were proposed, but they are all limited to

inferring the labels of regions or superpixels within the image, not actual pixels. In
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addition, several of these techniques use pretrained CNN models to extract features

from these regions or superpixels and require access to ImageNet. Table 4.2 sum-

marizes these techniques. Unlike the other matrix completion or factorization based

techniques, our proposed method infers true pixel-level labels and does not require

any pretrained models, or access to large annotated datasets such as ImageNet or any

other form of data augmentation or auxiliary supervision. In the next few sections,

we introduce this method in detail.
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4.3 Non-Negative Matrix Factorization

NMF [140, 141] is a commonly used matrix factorization technique that is closely

related to many unsupervised machine learning techniques such as k-means [149] and

spectral clustering [150]. NMF decomposes a non-negative matrix X P RNpˆNs
` into

the product of two lower-rank matrices W P RNpˆNf
` , and H P RNfˆNs

` such that both

W and H are non-negative, and Nf ă minpNp, Nsq. In other words we have,

X « WH. (4.1)

In our work, given the image-level labeled images, tx1,x2, ¨ ¨ ¨ ,xNsu, we vectorize

them to construct the data matrix X such that each image is a column in X. The

data matrix X has Ns such images, each of which is a vector of length Np. Here,

we use Np, Ns, and Nf to denote the number of pixels, the number of samples, and

the number of features (or the rank of X) respectively. NMF factorizes the data

matrix X into two non-negative matrices, a basis matrix W and a coefficient matrix

H. In clustering terms, the columns of W represent Nf number of clusters in the

data, whereas the columns of H represent the memberships of each of the images to

the different clusters in the data. Here, the clusters represent features extracted from

different seismic structures like salt domes, faults, or horizons.

The regular NMF problem does not have a closed-form solution and is typically

solved by minimizing the following objective function

arg min
W,H

||X´WH||2F s.t.W,H ě 0, (4.2)

where, || ¨ ||F is the Frobenius norm and ě is used to indicate element-wise inequal-

ity. Lee and Seung [141] proposed an efficient method of solving this problem using

multiplicative update rules and proved that they converge to a local minima.
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4.4 Sparsity and Orthogonality Constraints

Our label mapping algorithm is based on NMF partly because it can be used to learn

a parts-based representation [140], where each feature would represent a localized

“part” of the data. This allows us to learn class-specific features for our entire dataset,

and then use NMF to assign labels to each pixel in the dataset based on which features

were used to represent that pixel. To learn the class-specific features, we initialize

the feature matrix W0 using k-means applied separately on the different classes in

the data matrix X. This ensures that each feature wi in the matrix W corresponds

to a single class. As a byproduct of applying k-means on each class, we obtain a

binary cluster membership matrix, Q P t0, 1uNfˆN` where N` is the number of classes,

that encodes which feature in W came from which class. Specifically, the element

Qpi, jq “ 1 if the feature wi belongs to class j.

In practice however, this parts-based representation is rarely achieved using the

formulation in Equation 4.2. To remedy this, we impose a sparsity constraint on the

feature matrix W such that the sparsity of every feature wi satisfies

ρpwiq “

a

Np ´
||wi||1
||wi||2

a

Np ´ 1
, (4.3)

where ρp¨q indicates the sparsity of a vector. This value is always between zero and

one, with higher values indicating higher sparsity. To enforce this sparsity constraint,

we follow the algorithm proposed by Hoyer [151]. While other measures of sparsity

can be used, such as the `1 norm, the measure in Equation 4.3 is scale-invariant

and normalized to the range r0, 1s. Furthermore, it has been successfully used in

wide-ranging NMF applications, e.g., [142, 152].

The sparsity constraint on the features matrix W greatly helps in learning a parts-

based representation. However, we would also expect that each feature in W to only

represent a few images. In other words, in our setup it is very unlikely that the same
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feature will be present in a large number of the images. This is because NMF is not

scale-, rotation-, or translation-invariant, and therefore, each sparse feature is limited

in its ability to represent a large number of images. To enforce this expectation, that

each feature only represents a few images, we impose an orthogonality constraint on

the coefficients matrix H. To finalize our formulation, we add two regularization

terms on W and H. Our problem then becomes

arg min
W,H

||X´WH||2F ` γ||HHT
´ I||2F ` λ1||W||

2
F

`λ2||H||
2
F s.t. W,H ě 0 and ρpwiq “ ρw,

(4.4)

where matrix I is an identity matrix. The values γ1, λ1, and λ2 are constants, and

ρw is the desired sparsity level.

4.5 Multiplicative Update Rules

There are several approaches to solving the problem in Equation 4.3. Lee and Seung

[141] proposed an efficient method of solving the base NMF problem using multi-

plicative update rules and proved that they converge to a local minima. We adopt a

similar approach to solving the problem in Equation 4.3. The detailed derivation is

shown in Appendix B.

Instead of solving the problem in Equation 4.4 for both W and H, we decouple

this problem into two separate sub-problems. The first,

arg min
W

||X´WH||2F ` λ1||W||
2
F s.t. W ě 0, ρpwiq “ ρw, (4.5)

is solved for W while H is held constant. Then the second,

arg min
H

||X´WH||2F ` γ||HHT
´ I||2F ` λ2||H||

2
F s.t. H ě 0, (4.6)
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is solved for H while W is held constant. We use gradient descent to derive the

following multiplicative update rules for W:

Wt`1
“

Wt d pXHtT qij

pWtHtHtT ` λ1Wtqij
, (4.7)

and for H:

Ht`1
“

Ht d
`

Wt`1TX` γHt
˘

ij

pWt`1TWt`1Ht ` λ2Ht ` γHtHtTHtqij
. (4.8)

Here, d represents element-wise multiplication, the division operation is performed

in an element-wise fashion as well, while the superscript of each matrix indicates

the iteration number in which it was computed. To increase the stability of the

convergence, it is possible to renormalize the columns of W and the rows of H at

every iteration to have constant energy. The multiplicative update rules (MURs) in

Equations 4.7 and 4.8 are applied successively until both W and H converge.

As we show in Appendix B, these multiplicative update rules are a special case

of gradient descent with an automatic step size selection. Choosing to solve this

problem using MURs instead of other gradient descent based techniques has many

advantages. One advantage is the guaranteed non-negativity of W and H when they

are initialized with non-negative values. Another significant advantage is that MURs

preserve the initial sparsity values of W and H. This means that we can apply the

sparsity constraint only once on the initial feature matrix W0, and not have to apply

it in all the remaining iterations. This greatly improves the computational efficiency

of this approach. Furthermore, MUR computations can be highly efficient when done

on a GPU, rather than a CPU. This is because MURs only rely on elementary matrix

operations that GPUs are optimized for. We have achieved more than two orders of

magnitude speedup when this problem is solved on a GPU, using the PyTorch deep

learning library, rather than a traditional CPU-based implementation. A detailed

derivation of these MURs is shown in Appendix B, and summary of our proposed
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Algorithm 1: Weakly Supervised Label Mapping

Input: Data matrix X P RNpˆNs , image-level labels y P ZN` , number of
classes N`, feature sparsity value ρw, and number of features per
class k.

Output: Cluster membership matrix Q P RNfˆN` , final features matrix
Wfinal P RNpˆNf , and final coefficients matrix Hfinal P RNfˆNs .

1 W0,Q “ kMeansOnEachClasspX, k,yq
2 W0 “ applySparsityConstraintpW0, ρwq
3 H0 „ Uniformp0, 1q
4 while not converged do

5 Wt`1 “
WtdpXHtT qij

pWtHtHtT`λ1Wtqij

6 Ht`1 “
HtdpWt`1TX`γ1pB`BT qHtqij

pWt`1TWt`1Ht`γ1HtHtTHt`λ2Htqij

7 t “ t` 1

8 end

algorithm is shown in algorithm 1.

4.6 Extracting the Labels

Once W and H have converged, each column of H, hn, indicates the features used

to construct the nth image. Since every feature in W should correspond to a single

class, we can predict the label of each pixel in the image by knowing which features

are used to represent it. In other words, we can map the coefficients in hn to the

seismic structures that make up the image. Thus for image xn we can obtain

Ln “ WpQd phn1
T
qq @n “ r1, ¨ ¨ ¨ , Nss, (4.9)

where 1 is a column vector of ones of length N`. The matrix Q is used to encode

our knowledge of the image-level labels, and how the matrix W was initialized. The

resulting matrix, Ln P R
NpˆN`
` shows the likelihood of each seismic structure for each

pixel in the image. Then, the pixel-level labels for image xn correspond to the seismic
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Algorithm 2: Extracting the Pixel-Level Labels

Input: Cluster membership matrix Q P RNfˆN` , final features matrix
Wfinal P RNpˆNf , final coefficients matrix Hfinal P RNfˆNs , number of
classes N`, and confidence threshold τ .

Output: Pixel-level labels matrix Y P ZNpˆNs .
1 for nÐ 1 to Ns do
2 hn “ Hfinalp:, nq
3 Ln “ WfinalpQd phn11ˆN`qq

4 ynpiq “ arg max
j

Lnpi, jq @i “ r1, ¨ ¨ ¨ , Nps

5 qnpiq “ maxj Lnpi, jq @i “ r1, ¨ ¨ ¨ , Nps

6 ynpqnăτq “ 0

7 end
8 Y “ ry1,y2, ¨ ¨ ¨ ,yNss

structure given by

ynpiq “ arg max
j

Lnpi, jq @i “ r1, ¨ ¨ ¨ , Nps, (4.10)

where Lnpi, jq denotes the element in the ith row and jth column of matrix Ln. How-

ever, due to the nature of the weakly-supervised mapping of the labels, there is an

element of uncertainty in the mapping. Since the features wi are sparse, some pixels

in an image xn may not have a feature that accurately represents all the pixels within

it. These pixels typically end up being represented as a weighted sum of a large num-

ber of different features, often from different classes and having small coefficients.

This leads to noisy labeling results. To remedy this, we introduce a new uncertain

class that contains pixels with uncertain labels. We define our confidence, qn P RNp ,

in the predicted label of every pixel in the image xn as

qnpiq “ max
j

Lnpi, jq @i “ r1, ¨ ¨ ¨ , Nps. (4.11)

We can then assign any pixel whose confidence is less than a threshold τ to the
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uncertain class, denoted as class 0

ynpqnăτq “ 0. (4.12)

Once we obtain the pixel-level labels y for each image, we apply a 3ˆ 3 median filter

to clear any noisy labels and get the final labeling result for that image. We do this

for all Ns images and concatenate the results to construct the pixel-level labels matrix

Y P ZNpˆNs that contains the final pixel-level labels for all the images in the data

matrix

Y “ ry1,y2, ¨ ¨ ¨ ,yNss. (4.13)

This process is summarized in algorithm 2.

4.7 Results

To apply the label mapping algorithm we have presented in this chapter, we vectorize

the images with image-level labels to construct the data matrix X. The order of

the images in X is encoded in vector y that stores the image-level labels of each

image in X. We then apply the k-means clustering algorithm on each class separately

and use the results to initialize matrix W0 after we impose the sparsity constraint

in Equation 4.3, we also obtain the binary cluster membership matrix Q based on

where the features from each class were stored in W0. The coefficients matrix H0 is

initialized with uniform random numbers in the range r0, 1s. The values of λ1, λ2 and

γ are chosen empirically as 0.1, 0.5, and 5 respectively. The sparsity of the initial

features ρw is set to 0.4. Additionally, the confidence threshold τ is set to 0.001.

We then apply the MURs in Equation 4.7 and 4.8 successively until both W and

H converge. Figure 4.4 shows the convergence curves for the W objective function

in Equation 4.5, the H objective function in Equation 4.6, and the overall objective

function defined in Equation 4.4. We see that although we did not attempt to solve
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Figure 4.4: A plot showing the convergence curves for the multiplicative update rules
for W and H as well as the overall objective function in equation 4.4.

Equation 4.4 directly, the two MURs in Equation 4.7 and 4.8 effectively minimize

the overall objective function. We terminate our optimization at the 200th iteration.

Performed on a GPU, this process takes around 3 seconds.

Figure 4.5 shows the effect of the orthogonality constraint on the final coefficients

matrix Hfinal. On the left, Hfinal is shown when the orthogonality constraint is not

used. One can notice that there are many long horizontal lines. These lines indicate

that many features (from different classes) are used the represent all the images

in X. In other words, our features in W that were generated with the explicit

assumption that each features belongs to a single class, are used to represent images

from all classes. This is problematic and leads to wrong results. However, when the

orthogonality constraint is applied (see Figure 4.5 on the right), we see that many of

these lines disappear and we are left with a few features representing each class. The

remaining long horizontal lines mostly belong to the other class, that we expect to

be represented across all images.
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Figure 4.5: The effect of the orthogonality term in Equation 4.4 on the final cofficient
matrix Hfinal. On the left, Hfinal without the orthogonality term, and on the right
matrix Hfinal with the orthogonality term.

Figure 4.6 shows the initial labels for four different images from the four differ-

ent classes, as well as the generated labels for various iterations in the optimization

process. We note that since the coefficient matrix H was initialized with uniform

random values in the range r0, 1s, our “initial” confidence computed using Equation

4.11 is very high, and consequently, very few pixels in the initial labels had coefficient

smaller than τ and therefore belonged to the uncertain class. However, immediately

after the MURs are applied the confidence values of the labels drastically drops, to

the degree that all the pixels in the images during the first iteration are labeled as

uncertain. However, as the optimization progresses, confidence in various predicted

labels gradually increases. Towards the end of the optimization process, the orthogo-

nality term in Equation 4.4 plays a more prominent role in ensuring that most features

in W represent only a few images in X, this significantly reduces the number of noisy

labels.

Since our similarity-based retrieval workflow might produce a few images that do

not belong to the same class as the reference image, we might end up with a few wrong

image-level labels. However, the k-means initialization step of W0 greatly enhances

the robustness of our label mapping algorithm to mislabeled images. To validate

this claim, we examine the effect of wrongly retrieved images on the final pixel-level

labels and analyze the robustness of our label mapping algorithm. We achieve this by
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Initialization t “ 0 t “ 10 t “ 20 t “ 50 t “ 200

Figure 4.6: Results of our weakly-supervised label mapping approach for sample im-
ages from each class during different iterations. The initial labels (i.e., with randomly
initialized coefficients) are also shown in the first column. The blue, green, and red
colors correspond to the chaotic, fault, and salt dome classes respectively. The
gray color represents areas of low confidence.

artificially replacing images in X with wrongly-retrieved images, and then comput-

ing the final pixel-level labels and comparing the performance of our label mapping

algorithm relative to the base case where no images are replaced. The performance

is evaluated using the relative pixel accuracy that measures the percentage of pixels

that are classified identically to the case where no wrongly retrieved images are in-

jected in X. Pixels with low confidence in the base case are ignored. Fig. 4.7 shows

the drop in relative pixel accuracy as the percentage of wrongly-labeled images in X

increases for varying numbers of feature clusters per class, k. Fig. 4.8 shows a similar

plot for different values of the feature sparsity ρw. Overall, the larger the number of

clusters, and the higher the sparsity, the more robust the label mapping algorithm
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Figure 4.7: The robustness of our label mapping algorithm to mislabeled images for
various numbers of feature clusters per class, k.

is. In addition, we note that even when 20% of the images are wrongly retrieved, the

relative pixel accuracy only drops by around 10%.

Figure 4.11 displays several examples selected at random from the final results that

we obtain for various classes of subsurface structures. Since we do not have ground-

truth pixel-level annotations, the evaluation of the results is subjective. However, it

is rather easy to observe the main differences in the results between our proposed

method, and the two other baselines we implement. For our proposed approach, we

notice that it maps the pixel-level labels into the correct locations that correspond to

the various subsurface structures present within the image. To compare, the results

using regular NMF (as defined in Equation 4.2) are shown in Figure 4.9. We observe

that these results are extremely noisy, and do not capture the subsurface structures

correctly. Figure 4.10 shows the results for when we use sparse initial features in W0

with the regular NMF problem in 4.2. These results are better than those in Figure

4.9, but they contain bands of misclassified pixels, typically in the center of the
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Figure 4.8: The robustness of our label mapping algorithm to mislabeled images for
various feature sparsity levels, ρw.

image. The results of our proposed approach are far better at localizing the different

subsurface structures, and they do not exhibit the same bands of misclassified pixels.

Furthermore, it is important to note that the proposed approach is not limited to

these particular classes of subsurface structures and can be easily applied to any

other structure as long as a sufficient number of similar images are retrieved for each

class.

4.8 Summary

In summary, we have introduced a novel weakly-supervised label mapping algorithm

that maps image-level labels to pixel-level labels. We have shown how none of the

techniques in the literature can be used to address this problem in the context of

seismic interpretation where labeled data is scarce, and there are no large anno-

tated datasets that can be used. We have introduced an efficient algorithm based

on multiplicative update rules to solve the problem that have formulated, and we
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chaotic images other images fault images salt dome images

Figure 4.9: Results of our weakly-supervised label mapping approach for various
subsurface structures. The first two columns show images containing chaotic struc-
tures and the corresponding chaotic pixel-level labels generated by our method in
blue. The middle two columns show images that contain fault structures, and fault

pixel-level labels in green. The last two columns show images that contain salt dome

bodies or boundaries, and salt dome pixel-level labels in red.

have presented a detailed analysis of the proposed method. In addition, we showed

sample results of our method compared to baseline methods that use non-negative

matrix factorization. Overall, our method has proven to be very effective in inferring

the pixel-level labels of thousands of images in our retrieved dataset, and we show

in the next two chapters how these weak pixel-level labels can be used to train deep

networks to semantically label structural and stratigraphic features in seismic data.

There are several areas where this approach can be improved, however. First,

different classes of subsurface structures can often have different scales, whereas the

method we have currently proposed uses a fixed size image for every class. It is worth

investigating methods to alleviate this issue. Also, the final pixel-level labels are

sensitive to the initial features, W0. While we have shown that k-means can easily
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Figure 4.10: Results of our weakly-supervised label mapping approach for various
subsurface structures. The first two columns show images containing chaotic struc-
tures and the corresponding chaotic pixel-level labels generated by our method in
blue. The middle two columns show images that contain fault structures, and fault

pixel-level labels in green. The last two columns show images that contain salt dome

bodies or boundaries, and salt dome pixel-level labels in red.

be used to initialize W0, it is worth investigating other more promising methods for

initializing W0 such as a convolutional autoencoder (CAE). Also, if the data matrix

X has a wrong sparsity structure, applying the sparsity constraint in Equation 4.3 to

form the feature matrix W might not lead to representative features of the different

classes in X. In that case, other techniques should be used to initialize W. Finally,

there are a few parameters such as the sparsity level ρw, the number of retrieved

images per class M , and the regularization constants such as γ that need to be set

by the interpreter based on their empirical assessment of the results.
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Figure 4.11: Results of our weakly-supervised label mapping approach for various
subsurface structures. The first two columns show images containing chaotic struc-
tures and the corresponding chaotic pixel-level labels generated by our method in
blue. The middle two columns show images that contain fault structures, and fault

pixel-level labels in green. The last two columns show images that contain salt dome

bodies or boundaries, and salt dome pixel-level labels in red.
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CHAPTER 5

STRUCTURAL INTERPRETATION WITH WEAK PIXEL-LEVEL

LABELS

5.1 Overview

In the previous chapters, we have presented various elements of our weakly-supervised

framework for automatically generating large numbers of pixel-level training samples

using only a few exemplar images that are annotated on the image-level. Our goal

in this chapter is to demonstrate how these weak training labels can be used for

the semantic labeling of subsurface structures. Using automatically-generated weak

training data comes with many challenges. The labels are of a lesser quality than

manually obtained labels, and each label has an associated confidence value that

expressed the label mapping algorithm’s confidence in the accuracy of the generated

labels. We can denote our weak training data as D “ txi,yi,qiu
N
i“1, where xi are

the images, yi are the generated pixel-wise labels, qi are the associated confidence

values for each of the labels, and N is the number of images in our training data. Our

goal in this chapter is not only to use the set of images and weak labels txi,yiu
N
i“1

to train deep models for the semantic labeling of subsurface structures, but to also

explore methods to exploit the confidence values, tqiu
N
i“1, to improve the performance

of these models.

In the next section, we will explore methods in the literature that use deep learning

for structural interpretation. Then in Section 5.3, we introduce our proposed method,

including introducing the network architecture, and how we modify the loss function

to learn from weak labels. Section 5.4 shows sample structural interpretation results

that we have obtained on the Netherlands F3 block. We also compare the results to
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those that we obtained in Chapter 3. Finally, Section 5.5 presents a summary of this

chapter.

5.2 Background

An important step in structural interpretation is to identify and label important

subsurface structures that can potentially trap hydrocarbon reservoirs such as faults

and salt dome structures. In addition, the identification of these structures greatly

helps geophysicists create accurate geological models for the seismic survey, further

enhancing their ability to identify possible locations for hydrocarbon reservoirs. There

are many methods proposed in the literature that use classical techniques such as

edge detection [153, 154, 155], phase congruency [156, 157], and various seismic and

texture attributes [55, 54, 158, 159] for detecting seismic structures. AlRegib et al.

[4] provide a good overview of these methods, and more recent techniques based on

machine learning. Unfortunately, many of the proposed classical techniques require

manual processing of the data and are not robust enough to easily generalize to large

seismic volumes. Some are very computationally expensive, and are typically designed

as aides to a seismic interpreter, rather than standalone techniques.

In recent years, many deep learning based methods have been proposed for var-

ious structural seismic interpretation tasks. Waldeland and Solberg [51, 160] first

proposed using a CNN for classifying salt bodies. While they used a simple image

classification architecture, their results illustrated the great potential of using deep

networks compared to hand-engineered features. Shi et al. [161] proposed improving

on this by using an encoder-decoder style architecture that is better suited for se-

mantic segmentation tasks such as classifying salt domes. Di et al. [162] proposed a

technique for detecting faults using a traditional multilayer perceptron (MLP). Guo et

al. [163] proposed using a fully-convolutional CNN for fault prediction, while Huang

et al. [164] proposed combining both CNN and traditional machine learning models
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with a variety of seismic attributes for identifying faults. Wu et al. [67] proposed to

train a CNN to predict fault orientations on synthetic data and then showed that it

could also generalize well to real seismic data.

All these methods require “strong” labels1 that are obtained by manual labeling

from an interpreter. Manually labeling data for training deep learning models can be

as laborious and time-consuming as manual interpretation workflows. Furthermore,

over-training a network on a relatively small amount of manually annotated data can

lead to overfitting, and therefore poor generalization performance. Additionally, all of

the techniques introduced in the literature for structural seismic interpretation so far

are limited to extracting a single class of subsurface structures. This not only means

that training these models and using them for inference would take much more time

for multiple classes of seismic structures, but more importantly, the various machine

learning models would not learn a joint feature space to accurately discriminate the

various classes of subsurface structures. This can lead to false classifications and

requiring much more training data and compute power than if a single CNN was

used for the classification of multiple seismic structures. In the next section, we will

introduce our proposed method which is the only approach that both addresses the

issue of lack of sufficient data (through weakly-supervised learning), and uses a single

CNN to semantically label multiple classes of seismic structures.

5.3 Proposed Method

In our work, we use a weakly-supervised learning approach to address the problem of

lack of sufficient training data. In Chapter 2 we have introduced our proposed method

to retrieve large numbers of seismic images that contain similar subsurface structures

to examplar images selected by an interpreter. Then, we have shown how these images

1Here, “strong” labels mean high-quality labels generated by a domain expert. This is opposed
to automatically-obtained “weak” labels that convey far less information than strong ones, and are
usually far less accurate, but are much easier to obtain.
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can be assigned image-level labels, and how these labels can be mapped to pixel-level

labels using the algorithm we presented in Chapter 4. In this chapter, we show how

these weak labels can be used to effectively train a deep encoder-decoder style CNN for

semantically labeling not one, but multiple classes of seismic structures. Furthermore,

we propose a modification of the loss function that exploits the confidence values of

the weak labels to improve the overall robustness of the model. In this section, we

introduce two main aspects of our proposed method. First, we introduce the network

architecture that we adopt in this work for semantically labeling subsurface structures.

Then, we introduce how we adapt the network loss function to train the network more

effectively with weak labels.

5.3.1 Network architecture
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Figure 5.1: The architecture of the deconvolution network used in this work. White
layers are convolution or deconvolution layers. Red layers are max-pooling layers,
while green layers are unpooling layers.

Deconvolution networks [117] were previously introduced in Section 4.2.1. A de-

convolution network has a symmetric encoder-decoder style architecture composed

of stacks of convolution and pooling layers in the encoder, and stacks of deconvolu-

tion and unpooling layers in the decoder that mirror the encoders architecture. The

role of the encoder can be seen as doing object detection and classification, while

the decoder is used for accurate localization of these objects within the image. This
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encoder-decoder style architecture can achieve finer and more accurate results than

those of earlier networks such as FCN, and therefore is adopted in our work.

Figure 5.1 outlines the architecture of the deconvolution network used in our

work. This architecture has 30 convolution and deconvolution layers (shown in white).

These layers are typically followed by a rectified linear unit (ReLU) non-linearity. Five

maxpoling layers (shown in red) perform 2 ˆ 2 max pooling to select the maximum

filter response within small windows. The indices of the maximum responses for every

pooling layer are then shared with their respective unpooling layers (shown in green)

to undo this pooling operation and get a higher resolution image.

5.3.2 Adapting the loss function for weak labels

Since our weak labels are generated automatically, they are not of the same quality

as labels obtained from an expert interpreter. However, since obtaining such labels

does not require any manual labor nor expensive computational resources, we can use

these labels to train our model and modify our network loss function not to trust these

weak labels too much. The loss function has a significant impact on the features that

the network learns during training, and therefore must be adjusted to incorporate the

different confidence values we have in our training data. To achieve this, we modify

a recently introduced loss function called the focal loss (FL) [165] that was proposed

for dense detection of objects in computer vision tasks. Our modification of the focal

loss allows it to take the pixel confidence values into account when computing the

loss. We call the resulting loss function the weak focal loss (WFL). The WFL can be

viewed as a generalization of the FL as the FL, and the commonly used multiclass

cross entropy loss are special cases of the WFL.

If we denote the output predictions of our model as p̃pxq where x is the pixel

index, it is common to normalize these predictions (often referred to as logits) using
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the softmax function

pnpxq “
ep̃npxq

řN`
j“1 e

p̃jpxq
, (5.1)

where pnpxq is the normalized prediction for the nth class at pixel x. One of the

advantages of applying softmax to the output predictions of the model is that it

maps the output of the network to probability values (a.k.a. pnpxq P p0, 1s and
ř

n pnpxq “ 1). Another advantage of the softmax function is that it prevents the

normalized model outputs from having a 0 probability for any class. This helps

stabilize the learning process and prevents the network loss function from becoming

infinite.

Further, in multiclass classification problems, it is common to encode the ground

truth labels in a “one-hot vector” format. This means that the ground truth for a

pixel is represented by a binary vector of length N`, where N` is the number of classes,

instead of a single integer in the range r1, N`s. We refer to the one-hot encoded ground

truth labels as :qpxq where the symbol : refers to the binary nature of these labels.

Now, we can write the widely-used multiclass cross-entropy loss as

CEp:qpxq, ppxqq “ ´
N
ÿ̀

n“1

:qnpxq log pnpxq. (5.2)

Given this definition of the CE loss, the focal loss can be written as

FLp:qpxq, ppxqq “ ´
N
ÿ̀

n“1

p1´ pnpxqq
γ:qnpxq log pnpxq, (5.3)

where the term p1 ´ pnpxqq
γ reduces the loss for relatively well-classified examples

and lets the network focus more on harder misclassified examples. The parameter

γ controls how much weight is given to regions with low predicted confidence. Our
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WFL loss can then be defined as

WFLpqpxq, ppxqq “ ´
N
ÿ̀

n“1

p1´ pnpxqq
γqnpxq

α log pnpxq, (5.4)

where now we have replaced the one-hot encoded ground truth labels, :qpxq, with the

confidence values of the weak labels, qpxq. Further, the parameter α governs the

relationship between the confidence values and the loss function. This loss function

allows us to put more weight on misclassified regions in the images and not trust

our weak labels as much, especially if the model is particularly confident in a certain

classification. Furthermore, the lesser the confidence value in a weak label, the lesser

that label contributes to the overall loss of the image.

Finally, the loss for the entire image is the sum of the individual pixel-wise losses

WFLpqpxiq, ppxiqq “
ÿ

xPX
WFLpqpxq, ppxqq, (5.5)

where X is the set of the pixels that have confidence values greater than the confidence

threshold τ as defined in Chapter 4.

Figure 5.2 shows a comparison between the CE, FL, and WFL losses for different

values of γ and using α “ 1 in the case of WFL. As the value of γ increases, less

emphasis is put on regions where the network has learned relatively well and is fairly

confident in its predictions. Instead, more emphasis is put on regions where the

network has not learned to classify the underlying structure effectively. Figure 5.2

also allows us to see how CE and FL are special cases of the WFL. The FL loss is a

special case of the WFL loss with binary one-hot labels, and the CE loss is a special

case of the FL loss when γ “ 0. Later in the results section, we show the results of

the WFL loss and compare it with the CE equivalent for non-binary labels (i.e., WFL

with γ “ 0). More results on this are presented in Chapter 6.
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Figure 5.2: An illustration of the difference between cross entropy loss (CE), focal
loss (FL), and weak focal loss (WFL) for different values of γ and using α “ 1.
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5.4 Results

We train our deconvolution network, shown in Figure 5.1, on thousands of auto-

matically generated weak labels similar to those shown in Figure 4.11. To artificially

increase the size of our training dataset, we use several data augmentation techniques.

These techniques include random horizontal flipping, random rotations of up to ˘15˝

of all the images in our dataset and their corresponding labels, and adding random

Gaussian noise. These data augmentation techniques help to artificially increase the

size of our training set. Throughout our training, we set aside 25% of the training

data for model selection and validation purposes. Once our model’s parameters are

selected, we retrain our network on the entirety of the training data. We use the

AdaDelta optimizer, a batch size of 32, and we use γ “ 1 with the WFL loss. In our

work, we empirically found that a linear relationship between the confidence values

and the loss function (a.k.a. α “ 1) to work sufficiently well in most cases. Once

our deconvolution network is trained, we apply it to the Netherlands F3 block [3]

in a sliding window fashion to label the various subsurface structures in the data.

This is done both in the inline and the crossline directions; then the final results are

obtained by taking the element-wise product of the two. This step helps reduce any

false-positive classifications.

Figure 5.4 shows the class heat map highlighting chaotic, faults, and salt

dome structures in inline #250 of the F3 block. It can be seen that the output of

the model clearly extracts the details of the various subsurface structures with very

few false positives. Additionally, Figure 5.5 shows a 3D cross-section of the F3 block

with the boundaries of several salt domes highlighted with great accuracy. We note

that our model highlights only the salt dome boundaries and that there are hardly

any false positives present in the entire volume.

To compare the results of our deconvolution network and the FCN, we show in
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Figure 5.3(a) and 5.3(b) the results of labeling the faults class in crossline #1 of

the F3 block using an FCN-8s network and our deconvolution network respectively.

FCN-8s is the best performing variant of the FCN architecture proposed by [116].

Both FCN-8s and our deconvolution network were trained using the weak CE loss

(WFL with γ “ 0q. We notice that due to the upsampling operations in FCN, several

faults in the crossline where not labeled. These false negatives are shown as green

arrows in Figure 5.3. On the other hand, the deconvolution network result using the

weak CE loss was overly confident in the existence of faults in regions that had strong

reflections, even though they did not have any fault structures. These false positives

are shown as red arrows in Figure 5.3. To observe the effect of using the WFL with

γ “ 1 instead of γ “ 0 (a.k.a. the weak CE loss), we show in Figure 5.3(c) the result

of labeling the same crossline with a deconvolution network that used the WFL with

γ “ 1. By comparing Figure 5.3(b) and 5.3(c), We notice that the p1´ pnpxqq
γ term

in the WFL loss helps reduce false positives by not putting too much trust in the

weak training data.
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(a) FCN-8s using weak CE (WFL with γ “ 0)

(b) Deconvolution network using weak CE (WFL with
γ “ 0)

(c) Deconvolution network using WFL (ours)

Figure 5.3: Fault structures in crossline #1 highlighted using either deconvolution
network or FCN-8s, and using either the cross entropy loss (CE) or the weak focal
loss (WFL). Green arrows indicate false negatives, while red arrows indicate false
positives.
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(a) original seismic

(b) chaotic class highlighted

(c) faults class highlighted

(d) salt dome class highlighted

Figure 5.4: Results using our model to highlight various subsurface structures in
inline #350 of the Netherlands F3 block.
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Finally, it is important to compare the results that were obtained in this chapter

with those obtained in Chapter 3 that only relied on image-level labels. While the

models that were trained to obtain the results using image-level or pixel-level labels

are completely different, it is still worthwhile to compare the final results. Figure

5.6(a) shows the manually labeled inline #380 of the Netherlands F3 block, with

chaotic pixels labeled in blue, faults pixels in green, and salt dome in red. Figure

5.6(b) shows the best labeling result obtained in Chapter 3 that used curvelet features.

We note that there are many false positives in all three classes, and the boundaries

between the different classes do not conform to the actual seismic structures. Figure

5.6(c) shows the result of our deconvolution network trained using our WFL loss

function with γ “ 1 after post-processing 2. We note that other than a small region

in the faults class, there are hardly any false positives. Also, the resulting labels are

visibly much more similar to the manually labeled section that those in Figure 5.6(b).

Table 5.1 summarizes the objective results of the two results in Figure 5.6(b) and (c).

As we expect, the method we propose in this chapter significantly outperforms the

technique that was presented in Chapter 3 that relies only on image-level labels.

Table 5.1: A comparison of the labeling results for the method presented in this
chapter versus the method presented in Chapter 3 that only uses image-level labels.

Method PA MIU FWIU

SVM (curvelet features) using image-level labels 0.820 0.550 0.725

Deconvolution networks with our WFL loss, γ “ 1 0.893 0.643 0.823

5.5 Summary

In summary, in this chapter, we demonstrated how our weak labels could successfully

train a deep deconvolution network for the semantic labeling of subsurface structures.

2Binary thresholding using Otsu’s method, automatic removal of small objects, then morpholog-
ical closing and dilation.
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We proposed an adaptation of the focal loss that allows for the use of continuous con-

fidence values for training deep networks with weak automatically-generated labels.

We have shown results on the Netherlands F3 block using both our proposed method

and a baseline model that uses the FCN architecture and an equivalent to the CE

loss. The results show that mapping image-level labels to pixel-level labels, and then

using these labels to train a deep network to do the classification outperforms the

technique that was proposed in Chapter 3 that only relied on image-level labels. Our

objective results on the Netherlands F3 block show a 10% increase in the FWIU

metric. In addition, by observing the resulting labeled section, we notice that the

technique presented in this chapter helps reduce false positive classifications.

The results in this section are extremely promising, and show that only a few im-

ages annotated on the image level are sufficient for our proposed weakly-supervised

framework to successfully label various subsurface structures in a large seismic survey

such as the Netherlands F3 block. However, given the limited manually annotated

data for structural interpretation, it is difficult to objectively analyze our results

in more detail. In addition, we would like to study wether our proposed weakly-

supervised labeling framework can easily be extended to other problems within the

seismic interpretation domain. In the next chapter, we introduce a large fully-labeled

seismic stratigraphic interpretation dataset, and apply our weakly-supervised frame-

work to the more difficult problem of facies classification. This allows us to study

the robustness of our proposed approach, and allows us to accurately compare the

performance of our model trained with either strong or weak labels.
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(a)

(b)

(c)

Figure 5.6: (a) Manually labeled inline 380 of the Netherlands North Sea F3 block. (b)
Labeling result of the best-performing model in Chapter ?? using curvelet features.
(c) Labeling result of the model presented in this chapter that uses mapped pixel-level
labels. The chaotic class is colored in blue, faults is in green, and salt dome is in
red.
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CHAPTER 6

STRATIGRAPHIC INTERPRETATION WITH WEAK PIXEL-LEVEL

LABELS

6.1 Overview

In the previous chapters, we have introduced our framework for generating weakly-

labeled training data and then training deep networks with these weak labels to

semantically label subsurface structures. In this chapter, we apply our weakly-

supervised semantic labeling approach to the more challenging problem of seismic

stratigraphic interpretation.

Stratigraphy is a branch of geology that studies rock layers. Stratigraphic in-

terpretation uses observations from seismic data, well logs, and core data to study

sedimentary facies and depositional processes. Stratigraphic interpretation is one of

the major components in a seismic interpretation workflow and can be a great tool

to help identify hydrocarbon system elements such as reservoirs, seals, and source

rocks [166]. An important task in stratigraphic interpretation is seismic facies classi-

fication where the goal is to predict overall rock types from seismic data. When only

seismic data is used, only large-scale lithostratigraphic features such as lithostrati-

graphic groups or formations and regional (or global) sequences can be resolved [167].

As Figure 6.1 shows, the resolution of seismic data limits the size of stratigraphic

units that can be resolved. Smaller stratigraphic subdivisions are typically resolved

through well logs and core data. Figure 6.2 shows examples of various exposed lithos-

tratigraphic units. Our goal in this chapter is to classify every pixel in a 3D seismic

volume according to their main lithostratigraphic unit.

In our effort to extend our weakly-supervised semantic labeling approach to strati-
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Figure 6.1: The scale of a typical seismic waveform compared to an outcrop (left),
and compared to a wireline log (right). The frequencies used in seismic exploration
(10–60 Hz) have long wavelengths, and therefore, the resolution of seismic data is lim-
ited to large-scale stratigraphic features. Figure adapted from [167] with permission.
©(2016) Springer.

graphic interpretation, and as a result of a collaboration with an experienced geo-

scientist, we released the largest fully-annotated seismic facies classification dataset

currently available [168]. We also proposed two fully-supervised baseline models for

facies classification based on a deconvolution network architecture. The first base-

line is a patch-based model that is trained using a large number of small patches

extracted from all the inlines and crosslines in the training set. The second baseline

is a section-based model that was trained directly on entire inlines and crosslines of

the data. The results of these baseline models are later compared to the results of our

weakly-supervised models. In addition, we have open-sourced all the codes that were

used to train and test our baseline models using the PyTorch deep learning library1.

The goal of making the dataset and the code publically available is to help advance

the progress of machine learning research in this domain by providing a large high-

1Code and data are available from: www.github.com/olivesgatech/facies classification benchmark
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Figure 6.2: An example of exposed lithostratigraphic formations in the mountains
of northern Ellesmere Island, Canada. Figure adapted from [167] with permission.
©(2016) Springer. Photo credit A. F. Embry.

quality annotated dataset with a specific training and testing scheme for researchers

to train and benchmark their various models and to allow other researchers to fur-

ther build on previous advances in this domain. We introduce this dataset in detail

in Section 6.3.

While our weakly-supervised framework was designed for structural interpreta-

tion tasks, applying it to stratigraphic interpretation would allow us to analyze our

approach further, and study its applicability to other problems in seismic interpreta-

tion. Furthermore, given the amount of annotated data that we have released in our

dataset, we can better analyze the performance of our weakly-supervised approach

compared to conventional fully-supervised techniques.

In the next section, we review the relevant facies classification literature; then in
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Section 6.3, we introduce our dataset in detail including background knowledge about

the geology of the Netherlands F3 block, and how our dataset was created. Then, in

Section 6.4, we introduce two baseline models for facies classification. In Section 6.5

we describe the experimental setup and show how we obtained weak labels for facies

classification using our weakly-supervised framework. We show the results in Section

6.6 and compare the results of our fully- and weakly-supervised models. Finally, we

summarize this chapter in Section 6.7.

6.2 Background

Facies classification is a commonly studied problem in the seismic interpretation lit-

erature. There is a very rich literature on traditional supervised and unsupervised

methods for facies classification, e.g., [169, 170, 171]. These include methods that are

based on SVMs and artificial neural nets. Also, many unsupervised facies classifica-

tion (or more accurately, clustering) methods have been proposed in the literature.

K-means, principal component analysis (PCA), and self-organizing maps (SOM) are

some of the most popular unsupervised approaches for facies clustering. Zhao et al.

[172] provides a review of some of the most commonly used traditional techniques.

In recent years, facies classification methods based on deep learning have shown

great promise. In 2017, Rutherford Ildstad and Bormann [65] proposed a basic 5-layer

convolutional neural network (CNN) for facies classification, and made the annotated

data publically available. Rutherford Ildstad and Bormann only partially annotated

a single inline from the Netherlands F3 block (shown in Figure 6.3) for their model.

Dramch and Lüthje [173] used this partially annotated inline to fine-tune CNN mod-

els pretrained on ImageNet, and compared the performance of different CNN archi-

tectures such as VGG16 and ResNet50 at facies classification. Zhao [174] trained

two CNN architectures for facies classification, an image-classification model, and an

encoder-decoder style architecture, and compared their results. Zhao annotated 40
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Figure 6.3: The publically-available annotated inline of the Netherlands F3 block
from Rutherford Ildstad and Bormann [65]. The inline contains partial annotations
for nine classes of seismic facies.

additional inlines of the Netherlands F3 block using similar classes of facies as those

used by Rutherford Ildstad and Bormann [65]. However, the annotated data is not

publically available. Furthermore, the results in [174] suffer from severe overfitting,

and the testing scheme (10% of the training data randomly selected) does not accu-

rately reflect real-life scenarios where the testing data will not be highly correlated

with the training data. Similarly, Di et al. [175] expanded on the annotations of

Rutherford Ildstad and Bormann by manually annotating 12 inlines. He then trained

a 6 layer deconvolution network on his annotated data. These inlines were not made

publically available. The method proposed by Di et al. forces all the images in the

seismic volume to be resized to a fixed 256 ˆ 256 grid, therefore losing many of the

details in the seismic data. Furthermore, the results on the training data are not very

accurate, and no quantitative results were given.

The limited number of annotated sections used by recent papers [65, 174, 175] is
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understandable given that the annotation process is time-consuming, requires subject

matter expertise, and can be fairly subjective. However, this limited quantity of

annotated data undermines the mass potential machine learning could have when

deployed in such a field. To overcome this problem, some researchers have used

unsupervised deep learning techniques such as deep convolutional autoencoders [176,

177, 178], while Peters et al. [179] proposed a weakly-supervised method that uses

partial annotations and extends them along class boundary lines.

Whether researchers annotate their own training data or use other techniques,

there still remains a lack of large publicly-available annotated datasets for seismic

stratigraphic interpretation that can be used for training and comparing the perfor-

mance of different models. Furthermore, it is common for papers that apply deep

learning for facies classification, or other seismic interpretation tasks, to not contain

quantitative results, but rather rely solely on subjective visual inspection of the results

(e.g., [175]). All of this leads to highly subjective results and greatly hinders the abil-

ity of researchers to compare different approaches against each other and understand

the advantages and disadvantages of each approach.

To address these issues, and to help make machine learning research in seismic in-

terpretation more reproducible, we open-source a fully-annotated 3D geological model

containing multiple classes of lithostratigraphic units in the Netherlands F3 Block.

This model is grounded in the geology of the region and based on the study of both

the 3D seismic data and 26 different well logs in the Netherlands F3 block or its vicin-

ity. The data also includes fault planes that we have extracted from the F3 block.

The next section provides a brief overview of the geology of the Netherlands F3 block

and introduces our annotated model and how it was obtained.
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Figure 6.4: The location of the F3 block. Adapted from [180].

6.3 A 3D Geological Model of the Netherlands F3 Block

The North Sea is rich in hydrocarbon deposits, which is why this area is very well

studied in the literature [181]. The North Sea continental shelf, located off the shores

of the Netherlands, is divided into geographical zones described by different letters

of the alphabet; within these zones are smaller areas marked with numbers. One

of these areas is a rectangle of dimensions 16 km x 24 km known as the F3 block,

see Figure 6.4. In 1987, the F3 block 3D seismic survey was conducted to identify

the geological structures of this area and to search for hydrocarbon reservoirs. In

addition, many boreholes were drilled within the F3 block throughout the years. The

F3 block became one of the most widely known and studied seismic surveys after

dGB Earth Sciences made the data obtained from the survey publicly available.

This section aims to briefly describe the geology of the survey area and introduce
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the 3D geological model that we have developed and how it was obtained.

6.3.1 The geology of the F3 block

Within the continental shelf of the North Sea, ten groups of lithostratigraphic units

have been identified in the literature [182, 183, 184, 180]. These groups and their

main lithostratigraphic features are listed below from newest to oldest:

1. Upper North Sea group: claystones and sandstones from Miocene to Quater-

nary.

2. Lower and Middle North Sea groups: sands, sandstones, and claystones

from Paleocene to Miocene.

3. Chalk group: carbonates of Upper Cretaceous and Paleocene.

4. Rijnland group: clay formations with sandstones of Upper Cretaceous.

5. Schieland, Scruff and Niedersachsen groups: claystones of Upper Jurassic

and Lower Cretaceous.

6. Altena group: claystones and carbonates of Lower and Middle Jurassic.

7. Lower and Upper Germanic Trias groups: sandstones and claystones of

Triassic.

8. Zechstein group: evaporites and carbonates of Zechstein.

9. Upper and Lower Rotliegend groups: siliceous rocks and basalts of the

Lower Zechstein.

10. Limburg group: Upper carboniferous siliceous rock, which are the bedrock

for hydrocarbons.
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The F3 block is located on the border of two tectonic structures: the Step Graben

and the Dutch Central Graben (see Figure 6.5). These tectonic structures are charac-

terized by different lithostratigraphic units of varying thickness. This varying thick-

ness is a result of tectonic activity [185, 186], which was started in the Variscan

orogeny [187]. The area within the Step Graben is strongly disturbed by salt di-

apirs, which were active several times, from the Zechstein to the Paleogene period

[188]. On the other hand, and as a result of subsiding Jurassic rocks, the Altena,

Scruff, Schieland and Niedersachsen groups are observed only within the Dutch Cen-

tral Graben [180].
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6.3.2 The modeling process

To prepare our 3D geological model of the F3 block, we relied on both well logs and

3D seismic data. The next two subsections describe this process.

3D model building using well logs data

The well log data were obtained from a website managed by the Geological Survey

of the Netherlands (www.nlog.nl). The data (including information related to coor-

dinates, true vertical depth, measured depth along the curvature, inclinations, and

individual horizons) were collected for 26 boreholes located within the F3 block or its

vicinity. The exact locations of these wells are visualized in Figure 6.6.

Figure 6.6: Locations of the boreholes that were used to create the geological model.

Originally, the 26 wells contained 40 different horizons, so it was necessary to as-
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sign these different horizons to the various lithostratigraphic units that were adopted

in literature and were presented in the previous subsection. The next step was cor-

relating wells with each other. After that, it was possible to create a preliminary

3D model based on the well log data by using Petrel’s make/edit surface tool. This

process facilitated the preliminary visualization of the range of individual horizons,

which was very helpful in the further interpretation of the 3D seismic data.

3D model building using seismic data

Figure 6.7: A 3D view of our geological model of the F3 block.

The F3 block data was migrated in time, not depth, so it was necessary to do time-

depth conversion since the structural model must be prepared in the depth domain.

OpendTect 5.0 was used to perform the time-depth conversion using a velocity model

that was provided with the F3 block data.
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The next step in creating the model was faults-surface interpretation. Using

Petrel’s polygon editing tool, we interpreted the main fault surfaces and the fault

networks were created by using the fault framework modeling tool. Horizons were

interpreted in a similar fashion, but by using the seeded 3D autotracking tool, which

interpolated data automatically and took into account the faults networks modeled

previously.

Based on the interpreted horizons and faults, preliminary modeling was conducted.

This was done using the horizon modeling tool with volume-based modeling, which

is an advanced method of isochronous geological space modeling. The preliminary

model included several imperfections in the interpretations of horizons and faults,

so it was necessary to re-model several faults and conduct small corrections in the

interpreted horizons.

After this, it was possible to create the final three-dimensional model which high-

lights the regions between individual horizons. Here, Petrel’s structural modeling

module in the horizon modeling tool was used in addition to the create zone model

function. The final 3D geological model is shown in Figure 6.7.

6.3.3 The 3D geological model

Within our 3D geological model of the F3 Block, we identified seven groups of lithos-

tratigraphic units (see Figure 6.7). These are (from newest to oldest): the Upper

North Sea group, the Middle North Sea group, the Lower North Sea group, the

Chalk group, the Rijnland group, the Scruff group, and the Zechstein group.

These groups can be divided into three structural levels: Cenozoic (Lower, Mid-

dle, and Upper North Sea groups), Mesozoic (Scruff, Rijnland, and Chalk groups),

and Permian (Zechstein group).

As is evident in Figure 6.7, the F3 Block is characterized by highly variable geo-

logical structures, both in the horizontal and vertical range, which is manifested by
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the differential thicknesses of individual units and by the expanded faults network

related to salt tectonics. The area of the F3 Block can be divided into two regions:

Eastern and Western. The Eastern region is disturbed by the occurrence of Zechstein

diapirs and irregular faults network. The Western region is characterized by regular

fault networks and a more uniform thickness of lithostratigraphic units.

The Upper North Sea group is the youngest and the flattest lithostratigraphic

unit within our model. The top of the Upper North Sea group is the bottom of

the North Sea at the same time, which is about -40 meters above sea level (m a.s.l).

Differences in the depth of the ocean floor are small, and they are maximally 6 meters

within the whole F3 Block. It can be noted that the depth of this top decreases from

SW to NE. The thickness of the Upper North Sea group varies from about 1000 m

(in places deformed by Permian diapirs) to about 1320 m in the northern part of the

research area (see Figure 6.7).

Below the Upper North Sea group lies the Middle North Sea group. The depth

of the top of this unit ranges from -1000 m a.s.l. within the diapir in NE part of the

F3 Block to about -1360 m a.s.l. in the northern part of this area, between diapirs.

The thickness of the Middle North Sea group is from 20 to 150 m. As in the case of

the Upper North Sea group, there is a clear relationship between the occurrence of

Zechstein salts and the depth and thickness of this unit. Differences in the thickness

of this unit between both sites of faults are also visible.

The next unit is the Lower North Sea group. This unit contains similar lithos-

tratigraphic units to the Middle North Sea group, but is visually distinct in the seismic

data. The top is at a depth from -1100 m a.s.l., while the thickness is from about 180

to 750 m.

The top of the Chalk group is at depth from -1300 m a.s.l. (above the diapirs in

the NE part of the survey) to -2100 m a.s.l. (in the Eastern part of the survey, which

is undisturbed by diapirs). The minimum thickness of this unit is 25 m, while above
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the salt diapirs in NE part of the F3 Block, this substantially increases to 525 m.

The Rijnland group is submerged in the NNE direction, while it is the shallowest

in the SW part of the F3 Block and above some Zechstein diapirs at the center of the

survey (see Figure 6.9). The maximum thickness of the Rijnland group is about 200

m (above some diapirs), while in the other parts of the F3 block it can be less than

20 m or does not occur at all.

The Scruff group, similar to the Rijnland group, is thinned out in NNE direction,

more or less in the middle of the F3 Block, where the top of this layer has a depth of

-2180 m a.s.l. This layer is shallowest (-1500 m a.s.l.) in the SW part of the F3 block

and above the Zechstein diapirs in the Southern part of the survey. The thickness of

the Scruff group within our model boundaries ranges from 100 m to almost 700 m,

but is much larger in reality and can reach several kilometers [180].

The Zechstein group occurs only in the eastern part of the survey, as irregularly-

shaped salt diapirs. The shallowest part of the Zechstein group is at a depth of -1500

m a.s.l. while the maximum thickness of the Zechstein group within the research area

is about 700 m. However, as in the case of the Scruff group, the depth is much bigger.

According to the literature, it can reach several kilometers [180].

In addition to the identified groups of lithostratigraphic units mentioned above,

we have also identified three generations of faults. The first generation are reverse,

oblique-slip, sinistral faults with an SSW-NNE orientation. This direction is con-

nected with the course of the tectonic axis of the Dutch Central Graben, which

(similar to the whole Graben) has an SSW-NNE orientation. The second generation

of faults are normal, oblique-slip, dextral faults with a W-E orientation. Finally, the

third generation are faults that are genetically linked with faults from the first and

second generations, but were disturbed by the Permian halokinesis. Figure 6.8 shows

an overhead view of the three generations of faults that we have identified. Also,

Figure 6.9 shows two diagonal cross sections along the SW-NE and NW-SE axis in
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Figure 6.8: An overhead view of 3D fault planes from three different generations of
faults that we have identified in the F3 block.

our 3D model shown in Figure 6.7.

6.4 Deconvolution Network Baseline

To benchmark our weakly-supervised models, we propose two fully-supervised base-

line models for facies classification based on the deconvolution network architecture

we used previously in Chapter 5. The two baseline models are a section-based and a

patch-based model. These two models use the same architecture and almost identical

hyperparameters but differ in the way they are trained and the way they are used to

label the seismic volume.
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Figure 6.9: Two diagonal cross sections of our 3D geological model in Figure 6.7.

Patch-based model:

The patch-based model is trained on small patches extracted from the inlines and

crosslines of the training data. For very large seismic volumes, this approach can be

more feasible than using entire sections for training. At training time, the patches

of seismic data and their associated labels are sampled randomly from the inlines

and crosslines of the training set. During test time, the model samples overlapping

patches in the inline and crossline direction and averages the results to generate a 2D

labeled version of the test inline or crossline. This is done for all inlines and crosslines
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in the test sets. Since our weak labels are generated on the patch-level, we can only

train a weakly-supervised patch-based model.

Section-based model:

The section-based model is trained on entire inline and crossline sections. The ad-

vantage of this approach is two-fold. First, since the network is fed an entire section,

it can easily learn the relationships between different lithostratigraphic units and can

take the depth information into account when labeling the section. The second ad-

vantage is more practical. Training and testing entire sections at once means the

network can be trained or tested very quickly since there are only a relatively small

number of seismic inlines and crosslines2. One advantage of using a fully convolu-

tional architecture (such as the one we are using) is that the size of the network input

does not have to be fixed. The size of the output of the network changes as the size

of its input change. Therefore, the different size of the inline and crossline sections

does not pose any problem to the training of this network3.

Other variations:

In addition to the baseline section- and patch-based models, we have trained other

variations of these models to test how they can be improved. We have tested the

following variations:

In addition to the baseline patch- and section-based models, we have trained

other variations of these models to test how they can be improved. We have tested

the following variations:

• Baseline + data augmentation: data augmentation applies different label-preserving

2This is assuming the GPU memory is large enough to handle the size of the seismic sections.
On our Nvidia Titan X GPU, we trained the baseline section-based network – eight sections at a
time – in about 70 minutes.

3While the sizes of the inlines and crosslines do not need to match, their resolutions (in terms of
meters/pixel) should. In our case, pixels in the inline and crossline directions are both 25mˆ25m.
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transformations to the training data such as small rotations, random horizontal

flipping, and the addition of Gaussian noise. This can help increase the training

sample size, and help the network generalize better to the test data.

• Baseline + data augmentation + skip connections: we further improve on the

previous model by adding skip connections. In a deep neural network, the

output of a layer is typically passed on as the input to the next layer in the

network. Skip connections allow the output of a layer to be also passed as an

input to a layer farther up the network, skipping intermediate layers in the

process. These connections are implemented by directly adding the outputs of

various layers in the encoder part of the deconvolution network to the outputs

of the corresponding layers in the decoder. Skip connections help networks

overcome the vanishing gradient problem [189] by providing “shortcuts” for the

computed gradients to propagate to the lower layers of the network.

6.5 Experimental Setup

In this section, we introduce the main elements of the experimental setup, including

how the final geological model was created, how the model is split into training

and testing sets, and the results of applying similarity-based retrieval and weakly-

supervised label mapping to obtain weak labels from our training set.

6.5.1 The geological model
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Table 6.1: The percentage of pixels from different classes in the training set.

Zechstein Scruff Rijnland/Chalk Lower N. S. Middle N. S. Upper N. S.

1.48% 3.17% 6.53% 48.44% 11.89% 28.49%

The final geological model that we use to train and test our models is not the

entire volume shown in Figure 6.7. The time-depth conversion process of the seismic

data resulted in some artifacts. These artifacts were concentrated along the sigmoidal

structure in the Upper North Sea group. Due to these artifacts, and missing data on

the sides of the survey, we only use the data between inlines 100 and 701, crosslines

300 and 1201, and depth between 1005 and 1877 meters. Furthermore, we combine

the Rijnland and the Chalk groups in our final model to a single class due to various

issues with processing the Rijnland/Chalk boundary when generating the final model.

Table 6.1 shows the percentage of different classes in our training set.

In addition to the final model labels and seismic data, we also release the original

horizons for all the lithostratigraphic units, in addition to the extracted fault planes

from all three generations.

6.5.2 The train/test split

Careful selection of the training and testing sets is crucial in any machine learning

application. This is especially important in seismic data, where neighboring sections

are highly correlated. Selecting the training and testing sections randomly will lead

to artificially good test results, that are not representative of the actual generalization

performance of the tested models. Therefore, it is essential to minimize the correlation

between the training and testing sets as much as possible. It is also important to

ensure that both the training and testing sets have adequate representation of all the

classes in the dataset.

Therefore, we decide to split the data as shown in Figure 6.10. Namely, the data

is split into the following three sets:
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Upper N.S. Middle N.S. Lower N.S. Rijnland/Chalk Scruff Zechstein

Figure 6.11: The exemplar images of each class of lithostratigraphic units that were
used to retrieve the images from the seismic volume. Each class has two exemplar
images; one in the inline direction (top row), and another in the crossline direction
(bottom row). These images are 75ˆ 75 pixels.

1. Training set: This includes all the data in the range of inlines [300,700] and

crosslines [300,1000].

2. Test set #1: This set includes all the data in the range of inlines [100,299]

and crosslines [300,1000].

3. Test set #2: This sets includes all the data in the ranges of inlines [100,700]

and crosslines [1001,1200]. This set includes a large Zechstein diapir in the NE

of the survey that is never seen in the training set.

6.5.3 Obtaining weak labels

To obtain weak labels to train our weakly-supervised models, we first select exemplar

images from each class of lithostratigraphic units in our dataset. We select two 75ˆ75

exemplar images for every class. One exemplar is selected in the inline direction, while

the other is in the crossline direction. Figure 6.11 shows the examplar images that

we have chosen. We then apply the similarity-based retrieval method described in

Chapter 2 to retrieve M “ 1000 images for every class of lithostratigraphic units.

Example retrieved images from every class are shown in Figure 6.12.
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Exemplar 10th 50th 100th 200th

Figure 6.12: Sample retrieved images from each class. The first column shows the ex-
emplar image. The remaining columns show the 10th, 50th, 100th, and 200th retrieved
images from each class respectively.

Next, we apply our label mapping algorithm that was described in Chapter 4 to

map the image-level labels to pixel-level labels. In the structural interpretation case,

there is one structure in each image, and therefore, there is at most two classes in

each image: the structure itself and pixels assigned to the other class. However, in

the stratigraphic interpretation case, the label mapping is far more challenging since

each image can contain pixels from many other classes. The larger number of classes

certainly affects the results of the label mapping. Figure 6.13 shows examples of

images with their mapped labels, along with the ground truth labels for comparison.
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In our weakly-supervised models, we exploit our knowledge of the depositional history

of the various lithostratigraphic units in the dataset. This is achieved by weighing the

confidence maps of each lithostratigraphic units by how far removed they are from

the lithostratigraphic unit that is indicated in the image-level label of every image.

For example, if an image was assigned a Zechstein image-level label, indicating it was

likely extracted from the deeper end of the survey, then confidence maps of shallower

classes such as Upper and Middle North Sea will be given less weight than deeper

classes such as Rijnland/Chalk or Scruff. Selecting these weights should be a part of

the hyperparameter tuning for our weakly-supervised models; however, for the sake

of simplicity, we limit the models in our results section to binary weights, such that

non-neighboring classes are assigned zero confidence values.

Since we have access to the ground truth labels, we can objectively evaluate the

accuracy of our label mapping. These results are summarized in Table 6.2 for various

values of the normalized confidence threshold τ̃ . This normalized confidence threshold

is applied after confidence values are normalized to the range r0, 1s. Any pixel with a

confidence value less than τ̃ is ignored. The first row shows the results for the mapped

pixel-level labels when τ̃ “ 0. The second row shows the results for when we assign

zero confidence values for non-neighboring lithostratigraphic units. We note that this

simple adjustment of the confidence values increases the MCA score by 10%. Next,

we show the results for when the normalized confidence threshold, τ̃ , is set to 0.167.

This value corresponds to 1{Nc, and indicates what the normalized confidence value

would be if the weakly-mapped labels were randomly assigned. As Table 6.2 shows,

there is a significant increase in all metrics over the baseline case when these pixels

are ignored. This indicates that labels with low confidence are likely to be incorrect,

and therefore should not be trusted in the training process. The final row shows the

best results for when τ̃ is optimal (in our case, this is when τ̃ “ 0.78). In a real

scenario, we do not have access to the ground truth labels, and therefore we are not
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Seismic
Original

label
Weak
label

Seismic
Original

label
Weak
label

Upper
N.S.

Middle
N.S.

Lower
N.S.

Rijnland/
Chalk

Scruff

Zechstein

Figure 6.13: Results of the label mapping for each class of lithostratigraphic units.
Each row contains two examples from the same class showing the original seismic
image, the ground truth pixel-level labels, and the pixel-level labels obtained from
our label mapping algorithm.

able to select a value for τ̃ that maximizes the accuracy of the resulting weak labels.

For our weakly-supervised models in the results section, we use τ̃ “ 0 while assigning

zero confidence values to non-neighboring classes.

6.5.4 Training the models

In the fully-supervised case, we trained both the section- and the patch-based models

on the data extracted from the entire training set. The section-based model is trained

on the entire set 400 inlines and 700 crosslines that constitute the training set shown

in Figure 6.10. The fully-supervised patch-based model is trained on 75ˆ 75 patches
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Table 6.2: The accuracy of the weak labels used in this chapter compared to the
ground truth labels. The accuracy is computed using different metrics for different
values of the normalized confidence threshold τ̃ .

Normalized Confidence Threshold τ̃ PA MCA FWIU

0 (no threshold) 0.525 0.576 0.394

0 (no threshold, zeroing out non-neighboring units) 0.589 0.674 0.454

0.167 (1/number of classes) 0.603 0.681 0.474

0.167 (1/number of classes, zeroing out non-neighboring units) 0.626 0.717 0.498

0.78 (optimal) 0.707 0.738 0.546

extracted at regular overlapping intervals from the training set. The overlap between

each patch and the next one is 33%. In the weakly-supervised case, we only have

access to weakly-labeled patches, and therefore we only train a weakly-supervised

patch-based model. This model is trained only on 6000 weakly-labeled patches. Table

6.3 summarizes the size of the training set for each model.

Table 6.3: The size and amount of training data for various models.

Model Supervision Training data size

Patch-based Fully-supervised 56,000 patches of size 75ˆ 75

Section-based Fully-supervised 400 inlines and 700 crosslines

Patch-based Weakly-supervised 6,000 patches of size 75ˆ 75

All these fully- and weakly-supervised models and their variations are trained on

their corresponding training data until their validation loss converges. The Adam

optimizer is used for all the models. The cross entropy loss is used for the fully-

supervised models, while our weak focal loss (WFL) is used for the weakly-supervised

models. Furthermore, we experiment with weighing the WFL for every image by its

similarity to the exemplar image that was used to retrieve it. We call the resulting loss

function the similarity-weighted WFL or (SW-WFL). For an image xi, the SW-WFL
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can be written as:

SW´WFLpqpxiq, ppxiqq “ siWFLpqpxiq, ppxiqq, (6.1)

where si is the similarity between image xi and the exemplar image that was used to

retreive it, and WFL is the weak focal loss that we introduced in Section 5.3.2. The

similarity values in the SW-WFL are computed using Method 2 that was proposed

in Chapter 2.

6.6 Results

We divide the results section into two subsections. The first describes the results of

the fully-supervised baseline models on our facies classification dataset that we have

introduced in the previous sections. The second subsection describes the results of

our weakly-supervised models and compares them to the fully-supervised ones.

6.6.1 Fully-Supervised Results

We train our fully supervised patch- and section-based models on the data specified in

Table 6.3 until they converge on the validation set. We use a 10% hold-out validation

set for all our models. After the models have finished training, we test them by

using them to predict the labels for all inlines and crosslines in both test sets. We

then compute the performance metrics on the final results. Table 6.4 summarizes the

objective results for all the fully-supervised models that we have tested on both test

sets. Also, Figure 6.14 shows the results for inline 200 in test set #1 for all the models

in Table 6.4. We specifically choose inline 200 since it is exactly in the middle of test

set #1 and therefore it should give us a better idea of how these models perform on

average on test set #1. In the remainder of this section, we will discuss these results

in more detail.
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(a) Seismic data (b) Ground truth labels

(c) Patch-based baseline (d) Section-based baseline

(e) Patch-based + aug (f) Section-based + aug

(g) Patch-based + aug + skip (h) Section-based + aug + skip

Figure 6.14: The results of the different fully-supervised models on inline 200 from
test set #1.

Patch-based vs section-based models:

Since the patch-based models are trained on patches from different depths in the data,

they can easily confuse various classes that typically exist at different depths. For

example, the patch-based models in Figure 6.14 often confuse the Scruff group in the

bottom left of the image with the Lower North Sea group, while the section-based

models do not suffer from these problems as often. Figure 6.15 shows the confusion
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matrices for the baseline patch and section models. It shows how the patch-based

baseline model confuses many classes in our test sets with the Lower North Sea

group. The baseline section-based model is better at classifying the other classes as

Figure 6.15(b) shows. Additionally, since patch-based models are applied in a sliding

window fashion, they typically perform slightly worse at the boundaries of the images

where not many model outputs are averaged to create the final labeled section. This

sliding window technique also makes the test-time performance of patch-based models

extremely slow compared to section-based models.

Table 6.4 shows that both patch and section-based models perform reasonably well

on the North Sea groups, with the section-based models performing better. However,

for smaller classes such as the Scruff and Zechstein groups, the section-based models

show a clear advantage. The MCA score shows a 15% improvement of the section-

based baseline model vs. the patch-based model. Overall, section-based models

are superior to patch-based models due to their ability to incorporate spatial and

contextual information within each seismic section. They also have the advantage of

being faster to train and test. In our case, our label mapping algorithm is performed

on patches, and therefore, all our weakly-supervised models are patch-based models.

Data augmentation and skip connections:

Data augmentation is a technique to artificially increase the size of the training set.

This is quite useful when training a large network with a limited amount of training

data. We use simple augmentation operations including randomly rotating the patch

or the section by up to ˘15˝, adding random Gaussian noise, and randomly flipping

the patches or the sections horizontally. Using data augmentation significantly im-

proved the results for both baseline models, but especially the patch-based model.

The FWIU and MCA scores increased by more than 10% in the patch-based model,

and significantly improved the results for smaller classes such as the Zechstein and
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(a) Patch-based baseline model

(b) Section-based baseline model

Figure 6.15: Confusion matrices for our two fully-supervised baseline models on both
test set #1 and #2. Each row shows the distribution of the model output for each
class.
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Scruff groups. The results of the section-based model were also enhanced by using

data augmentation, although to a lesser degree.

For both patch- and section-based models, adding skip connections can improve

the results, and speed up the training. This is especially noticeable in the patch-

based model where adding skip connections to the baseline + aug model improved

the results by about 1% in the PA metric and approximately 1.5% in the MCA and

FWIU metrics. The improvement in the results of the section-based models is more

subtle, as adding skip connections only improved the PA result by 0.1%. Interestingly,

the Scruff group which is the worst performing class in both the patch and section-

based model seemed to benefit the most from the addition of skip connections. The

class accuracy score for the Scruff group increased by 6.5% and 25% in the patch and

section based models respectively. Overall, adding skip connections can improve the

results and speed up to the training process. In the case of the patch-based model,

the skip connection model converged four times faster than the baseline.

6.6.2 Weak vs. Strong Supervision

Since we have concluded in the previous subsection that the baseline + aug + skip

model seems to perform best for the patch-based model, we use this variant for all

the models we train in this subsection. Here, we compare the results of two fully-

supervised models that both use the CE loss. The first uses the entire 56,000 patches

of size 75 ˆ 75 for training. The next model uses the same 6000 training patches

that our weakly-supervised models use, only it uses the ground truth labels from our

dataset, and not the weakly-mapped labels. This second model would be a better

model to compare our weakly-supervised results as they both use the same amount

of data, and the only difference is the form of the supervision (strong/weak) and the

loss function that is used. For our weakly-supervised models, we train three models.

The first uses cross entropy loss and therefore does not use the confidence values in
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any way during the training process. This is a rather näıve approach, but we train

this model to highlight the advantage of using our proposed WFL loss function. The

second model uses our WFL loss function with γ “ 2. Finally, the last model uses our

similarity-weighted SW-WFL loss function with γ “ 2 as well. Table 6.5 summarizes

the objective results for both our strongly- and weakly-supervised models, and Figure

6.16 shows sample results from inline #200 in test set #1 for all the models listed in

the table. Also, Figure 6.17 shows sample results from inline #400 in test set #2.

Using the smaller set of 6,000 training patches compared to the complete train-

ing set only reduced the performance of our fully-supervised model by 1% in the

FWIU score and about 1.2 % in the PA score. This indicates that while more train-

ing data certainly helps improve the results, a smaller subset of the training data is

sufficient to achieve very competitive results. Our baseline weakly-supervised model

that uses cross entropy performs rather poorly with a pixel accuracy of 33.7%. Using

the WFL loss helps significantly improve the results, reaching a PA score of almost

51%. Also, by using the similarity-weighted weak focal loss (SW-WFL), this result

increases to nearly 53%. Figure 6.18 shows the confusion matrices for our fully-

supervised model (using the same 6,000 patches) and the weakly-supervised model

that uses the SW-WFL loss. We note that both models perform very poorly on the

Scruff class and Zechstein classes, with the weakly-supervised model performing sur-

prisingly better than the fully-supervised model in the Zechstein class. However, the

weakly-supervised model commonly confuses neighboring classes, such as confusing

the Rijnland/Chalk class with Zechstein and confusing the Upper North Sea class

with the Middle North Sea class.

Figure 6.17 shows sample results of our weakly-supervised models compared the

fully-supervised model that uses the same amount of training data. The results are

shown for inline 400 from test split #2. Inline 400 is rather simple, lacking any pixels

from the lower three classes in our model. We notice that the weakly-supervised
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models perform rather well, but their poor localization performance results in smaller

classes, such as the Middle North Sea class, being disproportionately large compared

to the ground truth. This effect can also be observed clearly with the Middle North

Sea and the Rijnland/Chalk classes in Figure 6.16 as well.

There are several ways where these weakly-supervised results can be improved;

this includes using more exemplar images and retrieving more images for every ex-

emplar. Also, using more data augmentation during training and testing, and adding

regularization to the network to prevent it from overfitting to the weak labels can

help. Finally, better exploitation of side information such as confidence and sim-

ilarity values can potentially further improve the results, and a more robust label

mapping algorithm can undoubtedly improve the localization accuracy of the result-

ing weakly-mapped labels.
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(a) Seismic data (b) Ground truth labels

(c) CE (entire training set) (d) CE

(e) CE (6,000 training patches) (f) WFL with γ “ 2

(g) SW-WFL with γ “ 2

Figure 6.16: The results of the different weakly- and strongly- supervised models on
inline 200 from test set #1. These results correspond to the models listed in Table
6.5 and the colors correspond to the colored classes in the same table.
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(a) Seismic data (b) Ground truth labels (c) CE (6000 training patches)

(d) CE (e) WFL with γ “ 2 (f) SW-WFL with γ “ 2

Figure 6.17: The results of the different weakly- and strongly- supervised models on
inline 400 from test set #2. These results correspond to the models listed in Table
6.5 and the colors correspond to the colored classes in the same table.

6.7 Summary

In this chapter, we first introduce a new fully-annotated dataset for facies classi-

fication. This dataset includes six different lithostratigraphic classes based on the

underlying geology of the Netherlands F3 block. The dataset also includes fault

planes from three different generations that we have identified in the F3 block. In ad-
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(a) CE (6,000 training patches)

(b) SW-WFL with γ “ 2

Figure 6.18: Confusion matrices for a fully-supervised and a weakly-supervised
model using the same architecture and trained on the same amount of data and
tested on both test set #1 and #2. Each row shows the distribution of the model
output for each class.
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dition, this dataset was used to train two fully-supervised deep learning models—and

a few variants that use data augmentation and skip connections—for facies classifi-

cation. The two models are a patch- and a section-based model, both based on a

deconvolution network architecture. We then compute objective results to evaluate

the performance of these models on our test set.

Furthermore, we apply the weakly-supervised framework that was introduced in

the previous chapters on this dataset. We use similarity-based retrieval to retrieve

thousands of images based on their similarity to two exemplar images for each class of

lithostratigraphic units. We assign these images image-level labels and then use our

weakly-supervised label mapping algorithm to map the image-level labels to weak

pixel-level labels. We then use our proposed weak focal loss (WFL), as well as a

newly-introduced similarity-weighted weak focal loss (SW-WFL) to train our deep

patch-based network on these weak labels.

We compute objective results for the accuracy of the label mapping, and we also

contrast the performance of the fully-supervised models to the weakly-supervised

models. We show that our weakly-supervised framework is not limited to seismic

structural interpretation and that our weakly-supervised models can learn to seman-

tically label seismic lithostratigraphic units, and can therefore be applied to strati-

graphic seismic interpretation. However, the results of weakly-supervised models will

always be less accurate than fully-supervised models, and more research is required

in this domain to attempt to minimize the gap between fully- and weakly-supervised

approaches. By releasing this dataset, we can start the journey of benchmarking

and testing various strategies that can help to bring the results of weakly-supervised

methods closer to fully-supervised ones.
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CHAPTER 7

CONCLUSION

While deep learning has revolutionized the fields of machine learning and computer

vision, the availability of annotated data to train deep neural networks is one of the

main bottlenecks to the successful application of deep learning to many problem do-

mains. This is especially true in the case of seismic interpretation where annotated

data is very scarce, and where oil and gas exploration and production companies sel-

dom share their data. Seismic interpretation is an excellent application domain where

weakly-supervised learning can play a significant role in enabling state-of-the-art deep

learning models to automate the most time-consuming and laborious interpretation

tasks. In this dissertation, we have presented a weakly-supervised framework for the

semantic labeling of large seismic volumes using state-of-the-art deep learning mod-

els. We have focused specifically on problems related to structural and stratigraphic

interpretation as they heavily rely on the analysis of visual data (i.e., 3D seismic

volumes) rather than well logs or core data.

Our weakly-supervised framework can be summarized in the following steps:

1. Similarity-based retrieval: An interpreter first selects images that exemplify

the visual features of each class of interest. These can be seismic structures

as in the case of structural interpretation, or seismic facies as in the case of

stratigraphic interpretation. Based on the provided exemplar images, we use

a state-of-the-art texture similarity measure that we have proposed to retrieve

a large number of images that contain similar visual features. Within a cer-

tain similarity-threshold, these images can be assigned image-level labels. This

process is detailed in Chapter 2.
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2. Weakly-supervised label mapping: Given a large number of images with

image-level labels, we developed a novel algorithm based on non-negative matrix

factorization that maps these image-level labels to pixel-level labels that can

encode the location of the target classes within each image. This label-mapping

algorithm also produces confidence values for each of the predicted labels. We

refer to these mapped pixel-level labels and their confidence values as “weak

labels”. The process of obtaining these weak labels is detailed in Chapter 4.

3. Training deep CNNs using weak labels: Given the weak labels from the

previous step, we can train deep convolutional neural networks for structural

or stratigraphic interpretation tasks. Training deep networks using noisy la-

bels is challenging, and therefore we have proposed a few steps to make the

training process more effective. This includes introducing a loss function specif-

ically designed for weak labels. We call this loss function the weak focal loss

(WFL). The WFL adjusts the training loss of the network to prevent it from

putting too much trust in the weak labels. We have discussed this step in the

context of seismic structural interpretation in Chapter 5, and in the context of

stratigraphic interpretation in Chapter 6.

In addition to the main steps mentioned above, we have investigated the semantic

labeling of seismic volumes using image-levels labels exclusively in Chapter 3. We

have shown that while it is indeed possible to rely exclusively on image-level labels,

the results are often lacking when compared to the results obtained when models are

trained with weak pixel-level labels.

The results of our weakly-supervised framework show that incredibly, using as

little as one or two exemplar images per class, we can generate a large dataset of

images with weak pixel-level labels and use these labels effectively to train deep CNN

models for various interpretation tasks. While the results will never be as accurate

as fully-supervised models (as we have shown in Chapter 6), this is a very promising
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approach to dramatically lower the costs associated with obtaining annotated data

for application domains where such annotated data is not available publically or is

expensive to obtain. In addition, given the ease of obtaining weak labels, we believe

weakly-supervised learning approaches will become more mainstream in the future as

more research is conducted in this field. We believe that the work we have presented

here will allow for more advances in the field of weakly-supervised learning, and more

specifically, in machine learning-enabled seismic interpretation.

7.1 Contributions

We can summarize the main contributions of this dissertation as follows:

1. Proposed a novel weakly-supervised framework for the semantic labeling of

visual data using a limited number of exemplar images for every class. We

have applied this framework on applications related to seismic structural and

stratigraphic interpretation and showed promising results. In the case of strati-

graphic interpretation, we have also compared the results of weakly-supervised

and strongly-supervised models.

2. Proposed a state-of-the-art texture similarity measure. We showed that this

measure is computationally efficient and significantly outperforms other mea-

sures in the literature in both retrieval and clustering accuracy, in addition to

it being more consistent across different classes compared to other measures in

the literature.

3. Proposed a method for semantic labeling of visual data using only image-level

labels. In addition, we used this method to investigate various texture and

multiresolution feature representations in their ability to accurately represent

seismic data.
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4. Proposed a novel weakly supervised label mapping algorithm, based on orthog-

onal non-negative matrix factorization. We demonstrated how this algorithm

can learn common features within each class, and then use these features to map

image-level labels to pixel-level labels. We have also shown how this algorithm

computes confidence values in the mapped pixel-level labels. Additionally, we

have shown how this algorithm is robust to noisy data, and we quantified the

accuracy of this algorithm in mapping the labels of lithostratigraphic units.

5. Proposed a new loss function that allows deep networks to use the confidence

values of weak labels to guide the training of the network. The weak focal loss

allows us to put more weight on misclassified regions in the images and not

trust the weak training labels as much, especially if the model is particularly

confident in a particular classification. In addition, we have introduced a variant

of this loss function that improves on it by weighing the loss for each image by

its similarity to the exemplar image used to retrieve it.

6. Finally, we have prepared and released the single largest annotated dataset in

the field of seismic stratigraphic interpretation. Our dataset is fully-annotated

and is based on the careful study of the geology of the survey area, the seismic

data, and various well logs within and around the seismic survey. We also es-

tablished a standard benchmark for training and testing various models on this

dataset, and made publically available all the codes to train and test models

on this benchmark. In addition, we have also released two smaller datasets,

Landmass-1 and Landmass-2, that contain various images of seismic struc-

tures that were used in our structural interpretation work.
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7.2 Future Research Suggestions

Weakly-supervised methods for semantic segmentation, object detection, and other

machine learning tasks will continue to be one of the most important areas of research

in machine learning. Increasingly, the main limitation to the successful application

of machine learning to many new application domains is the limited amount of an-

notated data. Given what we presented in this thesis, several promising research

directions can help extend and improve the proposed weakly-supervised semantic

labeling framework. These promising future research directions include the following:

• Throughout this thesis, we have mainly considered two-dimensional images;

however, seismic data is 3D in nature. To increase the robustness of the overall

framework, it is essential to exploit the 3D nature of seismic volumes. This

involves using the 3D curvelet transform for the similarity-based retrieval, ex-

tracting 3D features and using them to perform the label mapping, and using

3D data to train CNN models for semantic segmentation.

• In Chapter 2, we have shown the excellent results of our similarity-based re-

trieval method. However, when we have more than one exemplar image for

each class, the images are retrieved independently for each exemplar image. It

would be promising to investigate methods to use all the exemplar images to

jointly define the distribution of each class, and then retrieve images based on

this class distribution, rather than independently for each exemplar image.

• The label mapping algorithm we presented in Chapter 4 can be made more

robust by using a deep convolutional autoencoder (CAE). A CAE can learn a

compact feature representation for an image without needing any annotations.

By training a CAE to represent seismic images, it can be used to ’encode’

thousands of seismic images that have image-level labels. We can then apply

the label mapping algorithm we proposed directly on these encoded features.
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Once the mapping is done, the results can be decoded to the pixel-space again

to obtain pixel-level labels. There are many advantages to such an approach.

First, this approach would be much more robust to variations in the training

data including translations, rotations, and scale. Also, this technique would not

be limited to seismic images and can be easily applied to other visual domains

where such a label mapping would be useful.

• In Chapter 5, we have shown how using the weak focal loss can improve the

training of a model with weak labels. However, the topic of learning with

weak labels has not been explored fully in our work, nor in the literature at

large. It is a promising research direction to investigate methods for learning

using weak labels with their associated confidence values. One direction is

using the confidence values to guide what the model focuses on during training.

Another possible direction is to investigate how can the weak labels themselves

(or the models that were trained using them) be improved using the associated

confidence values in the weak labels (or the outputs of the models) in an iterative

way. This can possibly be done through an expectation-maximization (EM)

framework where a model would predict the weak labels, and then those weak

labels are used to improve the model and so on until the system converges.

These are only two suggested directions, but there is a lot to explore from both

a theoretical and an application-oriented standpoint.

• Finally, our weakly-supervised semantic labeling framework was focused on seis-

mic interpretation. However, our framework is not limited to this application

and can be extended to similar applications that do not have sufficient anno-

tated data. These applications include biomedical imaging and remote sensing

where there is a massive amount of raw data, but limited annotations available.
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CHAPTER 8

THESIS PRODUCTS

Below is a summary of the some of the products that resulted from this thesis. Many

of the products including the codes and preprints are publically available1.

8.1 Invention Disclosures

1. G. AlRegib and Y. Alaudah,“A method for transforming image-level labels

to pixel-level labels,” invention disclosure (GTRC ID: 7837) filed with Georgia

Tech in February 2018.

2. G. AlRegib, Z. Wang, A. Girdhar, H. Di, M. Alfarraj, and Y. Alaudah,“CLoud

Visual ExploreR (CLeVER): A Cloud-based Interpretation Platform for Rapid

Seismic Data Analysis,” invention disclosure filed with Georgia Tech in February

2018.

8.2 Magazine Articles

1. G. AlRegib, M. Deriche, Z. Long, H. Di, Z. Wang, Y. Alaudah, M. A. Shafiq,

M. Alfarraj, “Subsurface Structure Analysis using Computational Interpreta-

tion and Learning”, IEEE Signal Processing Magazine, March 2018.

8.3 Datasets

1. Landmass-1 and Landmass-2: https://ghassanalregib.com/landmass/

2. Facies Classification Benchmark: https://github.com/olivesgatech/facies_

classification_benchmark

1www.ghassanalregib.com/publications
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8.4 Journal Articles

1. Y. Alaudah, P. Mich lowicz, M. Alfarraj, G. AlRegib “A Machine Learning

Benchmark for Facies Classification,” Interpretation, submitted Dec. 2018.

2. Z. Wang, H. Di, M. A. Shafiq, Y. Alaudah, and G. AlRegib, “Successful

Leveraging of Image Processing and Machine Learning in Seismic Structural

Interpretation: A Review”, The Leading Edge, 37(6), 451-461.

3. Y. Alaudah, M. Alfarraj, and G. AlRegib, “Structure Label Prediction Us-

ing Similarity-Based Retrieval and Weakly-Supervised Label Mapping”, Geo-

physics, August 2018.

4. M. Alfarraj, Y. Alaudah, Z. Long, and G. AlRegib, “Multiresolution Analysis

and Learning for Computational Seismic Interpretation,” The Leading Edge,

February 2018.

5. Z. Long, Y. Alaudah, M. A. Qureshi, Y. Hu, Z. Wang, M. Alfarraj, G. AlRegib,

A. Amin, M. Deriche, and S. Al-Dharrab, “A comparative study of texture

attributes for characterizing subsurface structures in migrated seismic volumes,”

Interpretation, 2017.

8.5 Conference Papers

1. Y. Alaudah, M. Soliman, and G. AlRegib, “Facies Classification with Weak

and Strong Supervision – A Comparative Study”, submitted to SEG 89th Annual

Meeting, San Antonio, Texas, Sep. 15-20, 2018.

2. Y. Alaudah and G. AlRegib, “Weakly-Supervised Subsurface Structure La-

beling,” SBGf/SEG Machine Learning Workshop, Rio De Janeiro, Brazil, May

2018.
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3. Y. Alaudah, S. Gao, and G. AlRegib, “Learning to label seismic structures

with deconvolution networks and weak labels”, SEG 88th Annual Meeting, Ana-

heim, California, Oct. 14-19, 2018.

4. Y. Alaudah and G. AlRegib, “A weakly-supervised approach to seismic struc-

ture labeling,” 87th Annual SEG Meeting Extended Abstracts, Houston, Texas,

2017.

5. Y. Alaudah and G. AlRegib, “A directional coherence attribute for seismic

interpretation,” 87th Annual SEG Meeting Extended Abstracts, Houston, Texas,

2017.

6. Y. Alaudah, H. Di, and G. AlRegib, “Weakly Supervised Seismic Structure

Labeling via Orthogonal Non-Negative Matrix Factorization”, European As-

sociation of Geoscientists & Engineers, 79th Annual Conference & Exhibition

(EAGE), Paris, France, June 12-15, 2017.

7. M. Shafiq, Y. Alaudah, and G. AlRegib, “Salt dome delineation using edge-

and texture-based attributes,”, European Association of Geoscientists & En-

gineers, 79th Annual Conference & Exhibition (EAGE), Paris, France, June

12-15, 2017.

8. M. Shafiq, H. Di, Y. Alaudah, and G. AlRegib, “Interpreter-Assisted Interac-

tive Delineation of Salt Domes using Phase Congruency and Gradient of Texture

Attributes,” American Association of Petroleum Geologists, Annual Convention

and Exhibition (ACE), 2-5 April, 2017.

9. M. Shafiq, Y. Alaudah, G. AlRegib, and M. Deriche, “Phase Congruency for

Image Understanding with Applications in Computational Seismic Interpreta-

tion,” IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), New Orleans, USA, March 5-9, 2017
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10. Y. Alaudah and G. AlRegib, “Weakly-Supervised Labeling of Seismic Vol-

umes Using Reference Exemplars,” IEEE Intl. Conference on Image Processing

(ICIP), Phoenix, Arizona, USA, Sep. 25-28, 2016.

11. M. Alfarraj, Y. Alaudah, and G. AlRegib, “Content-adaptive Non-parametric

Texture Similarity Measure,” IEEE workshop on Multimedia Signal Processing

(MMSP), Montreal, Canada, Sep. 21-23, 2016.

12. M. Shafiq, Y. Alaudah, and G. AlRegib, “A hybrid approach for salt dome

delineation within migrated seismic volumes,” 78th EAGE Annual Conference

& Exhibition, Vienna, Austria, May 30-June 2, 2016.

13. Y. Alaudah and G. AlRegib, “A Generalized Tensor-Based Coherence At-

tribute,” European Association of Geoscientists & Engineers, 78th Annual Con-

ference & Exhibition (EAGE), Vienna, Austria, May 30-June 2, 2016.

14. Y. Alaudah, M. Shafiq, and G. AlRegib, “A Hybrid Spatio-Frequency Ap-

proach for Delineating Subsurface Structures in Seismic Volumes,” SIAM con-

ference on Imaging Science, New Mexico, USA, May 23-26, 2016.

15. Z. Long, Y. Alaudah, M. Qureshi, M. Farraj, Z. Wang, A. Amin, M. De-

riche, and G. AlRegib, “Characterization of migrated seismic volumes using

texture attributes: a comparative study,” SEG Annual Meeting, New Orleans,

Louisiana, Oct. 18-23, 2015.

16. Y. Alaudah and G. AlRegib, “A Curvelet-Based Distance Measure for Seismic

Images,” IEEE Intl. Conf. on Image Processing (ICIP), Quebec City, Canada,

Sept. 27-30, 2015.
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APPENDIX A

EVALUATION METRICS

A.1 Retrieval

The performance of a similarity measure is quantified using information retrieval

metrics. To present these metrics, let us first define the following sets:

• Rpjq
i “

!

r
p1q
i , r

p2q
i , . . . , r

pjq
i

)

is the set of the first j retrieved images for xi. Note

that the elements of Rpjq
i are sorted according to their similarity to xi such that

Similarity
´

xi, r
pkq
i

¯

ě Similarity
´

xi, r
pk`1q
i

¯

.

• Ci is the set of all images that are of the same class as xi; excluding xi itself.

• Rpjq
i X Ci is the intersection set of Rpjq

i and Ci. It contains images that are of

the same class as the query image xi in the set of retrieved images Rpjq
i .

Next, we define information retrieval metrics that were used to assess the performance

of the similarity measures.

• Precision at M (P@M) is the average percentage of the correctly retrieved

images when M images are retrieved. Formally,

P@M “
1

Ns

Ns
ÿ

i“1

∣∣∣RpMq
i X Ci

∣∣∣
∣∣∣RpMq

i

∣∣∣
, (A.1)

where | ¨ | is the number of elements in the set.

• Retrieval Accuracy (RA) is the P@M when M is equal to the number of
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elements that are of the same class the query images, i.e. M “ |Ci|.

RA “
1

Ns

Ns
ÿ

i“1

∣∣∣Rp|Ci|q
i X Ci

∣∣∣
∣∣∣Rp|Ci|q

i

∣∣∣
. (A.2)

• Average Precision (AP) for query image xi is a measure of precision that

takes into account the order of which the correct images are retrieved. It is

defined as:

APi “
1

|Ci|
Ns´1
ÿ

j“1

∣∣∣Rpjq
i X Ci

∣∣∣
∣∣∣Rpjq

i

∣∣∣
ˆ 1

tr
pjq
i P Ciu, (A.3)

where 1
tr
pjq
i P Ciu is the indicator function and it is equal to 1 if and only if

r
pjq
i P Ci, and 0 otherwise. Mean Average Precision (MAP) is the mean

value of AP for all images in the dataset.

• Receiver Operating Characteristics (ROC) is a plot of the true positive

rate (TPR) versus False Positive Rate (FPR) for different similarity thresholds.

TPR is the percentage of pairs of images that are correctly identified as similar

by the similarity measure. FPR is the percentage of pairs of images that are not

similar but were identified as similar by the similarity measure. The area under

the ROC curve, denoted as AUC, is used as a measure of the discriminative

power of a similarity measure. The ideal ROC curve would have perfect TPR

(TPR=1) for all values of FPR, and in this case, the area under the curve would

be maximum AUC = 1.

All of the metrics defined above are in the range r0, 1s with 1 being a perfect score.

A.2 Clustering

We use the rand index to evaluate our performance in the clustering experiments.

The rand index is defined as follows. For each pair of images, xi and xj, in the dataset,
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we compare the results obtained by k-means clustering with the ground truth which

are the image labels. Then we count the number of correctly clustered pairs. A pair

is said to be correctly clustered if:

• xi and xj are of the same class and are in the same cluster in the similarity-based

clustering.

• xi and xj are of different classes and are in different clusters in the similarity-

based clustering.

If pcorrect is the total number of correctly clustered pairs and ptotal “
`

Ns
2

˘

is the total

number of possible pairs in the dataset, The Rand Index is defined as the ratio of the

two numbers,

Rand Index “
pcorrect
pall

“
2pcorrect

NspNs ´ 1q
. (A.4)

The rand index results in values in the range r0, 1s with 1 being a perfect score.

A.3 Semantic Segmentation

If we denote Gi as the set of pixels manually labeled as i (i.e. belonging to the ith

class), Fi as the set of pixels classified by our classifier as i, and N` as the number of

classes, then the set of correctly classified pixels is the intersection set Fi X Gi. If we

use | ¨ | to denote the number of elements in a set, then we can define the following

metrics:

• Pixel Accuracy (PA) is the percentage of pixels over all classes that are

correctly classified,

PA “

ř

i |Fi X Gi|
ř

i |Gi|
. (A.5)
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• Class Accuracy for class yi (CAi) is the percentage of pixels that are cor-

rectly classified in a class yi.

CAi “
|Fi X Gi|
|Gi|

. (A.6)

We can also define the Mean Class Accuracy (MCA) as the average of CA over

all classes,

MCA “
1

N`

ÿ

i

CAi “
1

N`

ÿ

i

|Fi X Gi|
|Gi|

(A.7)

• Intersection over Union (IUi) is defined as the number of elements of the

intersection of Gi and Fi over the number of elements of their union set,

IUi “
|Fi X Gi|
|Fi Y Gi|

. (A.8)

This metric measures the overlap between the two sets and it should be 1 if

and only if all pixels were correctly classified. Averaging the IU over all classes

results in the Mean Intersection over Union (MIU) metric:

MIU “
1

N`

ÿ

i

IUi “
1

N`

ÿ

i

|Fi X Gi|
|Fi Y Gi|

. (A.9)

• Frequency-Weighted Intersection over Union (FWIU) is a weighted av-

erage of IU over all classes such that classes with higher frequency are given

more weight:

FWIU “
1

ř

i |Gi|
¨
ÿ

i

|Gi| ¨ IUi “
1

ř

i |Gi|
¨
ÿ

i

|Gi| ¨
|Fi Y Gi|
|Fi X Gi|

(A.10)

.
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APPENDIX B

DERIVATION OF MULTIPLICATIVE UPDATE RULES

We would like to derive the multiplicative update rules shown in equations 4.7 and

4.8. These multiplicative update rules solve the optimization problems introduced in

equations 4.5 and 4.6. To derive the multiplicative update rules, we adopt an approach

similar to that proposed by [141]. We will derive the gradient descent updates to solve

the problem for W and H separately. Then, we solve the problem in equation 4.4

by alternately updating W and H successively until they converge. We will derive

the multiplicative update rules using the objective functions in equations 4.5 and

4.6. For the sake of the simplicity of the derivation, we drop all the constraints in

equations 4.5 and 4.6, and later show that the derived multiplicative update rules for

the non-constrained problem also solve the constrained optimization problem under

the conditions that we have. Additionally, we have shown in Figure 4.4 that solving

these two problems iteratively also solves the problem in equation 4.4. Therefore, for

matrix W we have

arg min
W

||X´WH||2F ` λ1||W||
2
F , (B.1)

and for H, we have

arg min
H

||X´WH||2F ` γ1||HHT
´B||2F ` λ2||H||

2
F . (B.2)

We derive the multiplicative update rules for W and H respectively in the follow-

ing two subsections.
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B.1 Multiplicative Update Rule for W

If we denote the objective function defined in B.1 as FW, we can rewrite FW as

FW “ Tr
`

pX´WHqT pX´WHq
˘

` λ1TrpWTWq, (B.3)

where Trp¨q denotes the trace of a matrix. This is a well known property of the

Frobenius norm. Simplifying the expression further, and employing the property

that TrpA`Bq “ TrpAq ` TrpBq, we obtain

FW “ TrpXTXq ´ TrpXTWHq ´ TrpHTWTXq

` TrpHTWTWHq ` λ1TrpWTWq.

(B.4)

Taking the partial derivative of FW with respect to W we get

BFW

BW
“ ´2pXHT

q ` 2pWHHT
q ` 2λ1W

9 ´XHT
`WHHT

` λ1W

(B.5)

The gradient descent update for W will then be a step in the direction of the negative

gradient. In other words,

Wt`1
“ Wt

` η
`

XHtT
´WtHtHtT

´ λ1W
t
˘

, (B.6)

where η is the step size. Note that this is an additive update rule. The negative

signs indicate that even if the values in X, W0 and H0 are non-negative, we are not

guaranteed to arrive at a non-negative final solution. However, by selecting our step

size as

η “
Wt

WtHtHtT ` λ1Wt
, (B.7)

and substituting in the gradient descent update in equation B.6, the additive rule

160



becomes a multiplicative update rule:

Wt`1
“ Wt

d

`

XHtT ` εqij
`

WtHtHtT ` λ1Wt ` ε
˘

ij

. (B.8)

We add a small positive real number ε to avoid division by zero. This result is identical

to the result in equation 4.7.

B.2 Multiplicative Update Rule for H

Similarly for H, we write the objective function in equation B.2 as

FH “ Tr
`

pX´WHqT pX´WHq
˘

` λ2TrpHTHq

` γ1Tr
`

pHHT
´BqT pHHT

´Bq
˘

.

(B.9)

Taking the partial derivative of FH with respect to H, and simplifying the expression

further,
BFH

BH
“ ´2WTX` 2pWTWHq ` 2λ2H

` 4γ1H
THHT

´ 2γ1pB`BT
qH

9pWTWHq ` λ2H` γ1H
THHT

´
`

WTX` γ1pB`BT
qH

˘

.

(B.10)

The gradient descent update step then becomes

Ht`1
“ Ht

` η
´

Wt`1TX` γ1pB`BT
qHt

´ pWt`1TWt`1Ht
` λ2H

t
` γ1H

tTHtHtT
q

¯

.

(B.11)

If we select the step size to be

η “
Ht

Wt`1TWt`1Ht ` λ2Ht ` γ1HtTHtHtT
, (B.12)

161



and substitute this value in equation B.11 and simplify, we arrive at the multiplicative

update rule for H

Ht`1
“

Ht d
`

Wt`1TX` γ1pB`BT qHt ` ε
˘

ij
`

Wt`1TWt`1Ht ` λ2Ht ` γ1HtTHtHtT ` ε
˘

ij

(B.13)

This is identical to the update rule shown in equation 4.8.

B.3 Constrained Optimization

The update rules shown in equations B.8 and B.13 solve the non-constrained prob-

lems in equation B.1 and B.2. However, our original problem in equation 4.4 is a

constrained one. Since we initialize the matrices W and H with non-negative values,

it is trivial to see that the multiplicative update rules in equations B.8 and B.13

will always give non-negative results, thus satisfying the non-negativity constraint.

Furthermore, since the sparsity constraint on the features wi is applied to the initial

features, W0, any further application of the update rule in equation B.8 will not

modify the zero elements in the matrix W, and hence, the initial feature sparsity is

preserved. Therefore, although we solved for the non-constrained problem in equa-

tions B.1 and B.2, our solution is still valid for the constrained problem in equation

4.4.
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pervised learning to detect salt body,” Society of Exploration Geophysicists,
2015.

[53] C. Ramirez, G. Larrazabal, and G. Gonzalez, “Salt body detection from seis-
mic data via sparse representation,” Geophysical Prospecting, vol. 64, no. 2,
pp. 335–347, 2016.

[54] M. A. Shafiq, Z. Wang*, A. Amin, T. Hegazy, M. Deriche, and G. AlRegib,
“Detection of salt-dome boundary surfaces in migrated seismic volumes using
gradient of textures,” in SEG Technical Program Expanded Abstracts 2015,
Society of Exploration Geophysicists, 2015, pp. 1811–1815.

[55] T. Hegazy* and G. AlRegib, “Texture attributes for detecting salt bodies in
seismic data,” in SEG Technical Program Expanded Abstracts 2014, Society of
Exploration Geophysicists, 2014, pp. 1455–1459.

[56] A. Berthelot, A. H. Solberg, and L.-J. Gelius, “Texture attributes for detection
of salt,” Journal of Applied Geophysics, vol. 88, pp. 52–69, 2013.

167

https://doi.org/10.1190/tle37060443.1
https://doi.org/10.1190/tle37060443.1


[57] J. Lomask, R. G. Clapp, and B. Biondi, “Application of image segmentation
to tracking 3d salt boundaries,” GEOPHYSICS, vol. 72, no. 4, P47–P56, 2007.
eprint: https://doi.org/10.1190/1.2732553.

[58] F. Farrokhnia, A. R. Kahoo, and M. Soleimani, “Automatic salt dome detec-
tion in seismic data by combination of attribute analysis on crs images and igu
map delineation,” Journal of Applied Geophysics, vol. 159, pp. 395–407, 2018.

[59] X. Wu and D. Hale, “Automatically interpreting all faults, unconformities,
and horizons from 3d seismic images,” Interpretation, vol. 4, no. 2, T227–
T237, 2016.

[60] Z. Wang and G. AlRegib, “Interactive fault extraction in 3-d seismic data using
the hough transform and tracking vectors,” IEEE Transactions on Computa-
tional Imaging, vol. 3, no. 1, pp. 99–109, 2017.

[61] M. A. Shafiq, H. Di, and G. AlRegib, “A novel approach for automated de-
tection of listric faults within migrated seismic volumes,” Journal of Applied
Geophysics, 2018.

[62] H. Di, Z. Wang, and G. AlRegib, “Seismic fault detection from post-stack
amplitude by convolutional neural networks,” in 80th EAGE Conference and
Exhibition 2018, 2018.

[63] X. Wu and S. Fomel, “Automatic fault interpretation with optimal surface
voting,” Geophysics, vol. 83, no. 5, pp. 1–52, 2018.

[64] T. Coleou, M. Poupon, and K. Azbel, “Unsupervised seismic facies classi-
fication: A review and comparison of techniques and implementation,” The
Leading Edge, vol. 22, no. 10, pp. 942–953, 2003. eprint: http://dx.doi.org/
10.1190/1.1623635.

[65] C. Rutherford Ildstad and P. Bormann, MalenoV: Tool for training and clas-
sifying SEGY seismic facies using deep neural networks, https://github.
com/bolgebrygg/MalenoV, 2017.

[66] M. Araya-Polo, T. Dahlke, C. Frogner, C. Zhang, T. Poggio, and D. Hohl,
“Automated fault detection without seismic processing,” The Leading Edge,
vol. 36, no. 3, pp. 208–214, 2017.

[67] X. Wu, Y. Shi, S. Fomel, and L. Liang, “Convolutional neural networks for
fault interpretation in seismic images,” in SEG Technical Program Expanded
Abstracts 2018, Society of Exploration Geophysicists, 2018, pp. 1946–1950.

168

https://doi.org/10.1190/1.2732553
http://dx.doi.org/10.1190/1.1623635
http://dx.doi.org/10.1190/1.1623635
https://github.com/bolgebrygg/MalenoV
https://github.com/bolgebrygg/MalenoV


[68] R. M. Haralick, K. S. Shanmugam, and I. Dinstein, “Textural features for
image classification.,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 3, no. 6, pp. 610–621, 1973.

[69] Y. Zhai, D. L. Neuhoff, and T. N. Pappas, “Local radius index-a new tex-
ture similarity feature,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, 2013, pp. 1434–1438.

[70] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 971–
987, 2002.

[71] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary pat-
tern operator for texture classification,” Image Processing, IEEE Transactions
on, vol. 19, no. 6, pp. 1657–1663, 2010.

[72] L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, “Extended local binary
patterns for texture classification,” Image and Vision Computing, vol. 30, no. 2,
pp. 86–99, 2012.

[73] Y. Hu, Z. Long, and G. AlRegib, “Completed local derivative pattern for
rotation invariant texture classification,” in Proceedings of the International
Conference on Image Processing (ICIP), IEEE, 2016, pp. 3548–3552.

[74] J. G. Daugman, “Complete discrete 2-d gabor transforms by neural networks
for image analysis and compression,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 36, no. 7, pp. 1169–1179, 1988.

[75] M. N. Do and M. Vetterli, “The Contourlet Transform: An Efficient Direc-
tional Multiresolution Image Representation,” IEEE Transactions on Image
Processing, vol. 14, no. 12, pp. 1–16, 2005.

[76] A. L. da Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet
transform: theory, design, and applications.,” IEEE transactions on image pro-
cessing : a publication of the IEEE Signal Processing Society, vol. 15, no. 10,
pp. 3089–3101, 2006.

[77] V. Vapnik, “An overview of statistical learning theory,” IEEE Transactions
on Neural Networks, vol. 10, no. 5, pp. 988–999, Sep. 1999.

[78] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–
905, Aug. 2000.

169



[79] A. D. Halpert, R. G. Clapp, and B. Biondi, “Salt delineation via interpreter-
guided 3d seismic image segmentation,” Interpretation, vol. 2, no. 2, T79–T88,
2014. eprint: http://dx.doi.org/10.1190/INT-2013-0159.1.

[80] D. Hale and J. Emanuel, “Seismic interpretation using global image segmen-
tation,” in SEG Technical Program Expanded Abstracts 2003. 2005, pp. 2410–
2413. eprint: http://library.seg.org/doi/pdf/10.1190/1.1817860.

[81] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “SLIC
superpixels compared to state-of-the-art superpixel methods,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 11, pp. 2274–
2282, Nov. 2012.

[82] R. Zabih and V. Kolmogorov, “Spatially coherent clustering using graph cuts,”
in 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2004), with CD-ROM, 27 June - 2 July 2004, Washington,
DC, USA, 2004, pp. 437–444.

[83] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm
based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 13, no. 6, pp. 583–598, Jun. 1991.

[84] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K.
Siddiqi, “Turbopixels: Fast superpixels using geometric flows,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2290–2297, Dec. 2009.

[85] Z. Long, Y. Alaudah, M. A. Qureshi, Y. Hu, Z. Wang, M. Alfarraj, G. Al-
Regib, A. Amin, M. Deriche, and S. Al-Dharrab, “A comparative study of
texture attributes for characterizing subsurface structures in migrated seismic
volumes,” Submitted to Interpretation, 2017.

[86] I. Daubechies, Ten lectures on wavelets. Siam, 1992, vol. 61.

[87] H Guo, M Lang, J. Odegard, and C. Burrus, “Nonlinear processing of a shift-
invariant dwt for noise reduction and compression,” in Proceedings of the In-
ternational Conference on Digital Signal Processing, 1995, pp. 332–337.

[88] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. Wells Jr, “Noise re-
duction using an undecimated discrete wavelet transform,” Signal Processing
Letters, IEEE, vol. 3, no. 1, pp. 10–12, 1996.

[89] R. Zaciu, C. Lamba, C. Burlacu, and G. Nicula, “Image compression using an
overcomplete discrete wavelet transform,” Consumer Electronics, IEEE Trans-
actions on, vol. 42, no. 3, pp. 800–807, 1996.

170

http://dx.doi.org/10.1190/INT-2013-0159.1
http://library.seg.org/doi/pdf/10.1190/1.1817860


[90] J. E. Fowler, “The redundant discrete wavelet transform and additive noise,”
Signal Processing Letters, IEEE, vol. 12, no. 9, pp. 629–632, 2005.

[91] R. Mehrotra, K. R. Namuduri, and N. Ranganathan, “Gabor filter-based edge
detection,” Pattern recognition, vol. 25, no. 12, pp. 1479–1494, 1992.

[92] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using gabor
filters,” Pattern recognition, vol. 24, no. 12, pp. 1167–1186, 1991.

[93] P. Burt and E. Adelson, “The laplacian pyramid as a compact image code,”
IEEE Transactions on Communications, vol. 31, no. 4, pp. 532–540, Apr. 1983.

[94] R. H. Bamberger and M. J. T. Smith, “A filter bank for the directional decom-
position of images: Theory and design,” IEEE Transactions on Signal Process-
ing, vol. 40, no. 4, pp. 882–893, Apr. 1992.

[95] F. Lu, Q. Zhao, and G. Yang, “Nonsubsampled contourlet transform-based
algorithm for no-reference image quality assessment,” Optical Engineering,
vol. 50, no. 6, pp. 067 010–067 010, 2011.

[96] Y. Hu, Z. Long, and G. AlRegib, “Completed local derivative pattern for
rotation invariant texture classification,” in Image Processing (ICIP), 2016
IEEE International Conference on, IEEE, 2016, pp. 3548–3552.

[97] R. M. Haralick, K. Shanmugam, et al., “Textural features for image classifica-
tion,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–
621, 1973.

[98] A. Berthelot, A. H. S. Solberg, E. Morisbak, and L.-J. Gelius, “3d segmen-
tation of salt using texture attributes,” in SEG Technical Program Expanded
Abstracts 2012. 2012, pp. 1–5. eprint: https://library.seg.org/doi/pdf/
10.1190/segam2012-1443.1.

[99] Z. Wang, C. Yin, and W. Zhao, “Glcm parameters of channel texture analysis,”
in SEG Technical Program Expanded Abstracts 2011. 2011, pp. 1989–1993.
eprint: https://library.seg.org/doi/pdf/10.1190/1.3627597.

[100] A. Amin*, M. Deriche, T. Hegazy, Z. Wang, and G. AlRegib, “A novel ap-
proach for salt dome detection using a dictionary-based classifier,” in SEG
Technical Program Expanded Abstracts 2015. 2015, pp. 1816–1820. eprint: https:
//library.seg.org/doi/pdf/10.1190/segam2015-5925748.1.

[101] G. Zhang, J. Zheng, X. Yin, and Y. Pu, “Coherence cube based on curvelet
transform,” in SEG Technical Program Expanded Abstracts 2008. 2008, pp. 924–
928. eprint: https://library.seg.org/doi/pdf/10.1190/1.3063790.

171

https://library.seg.org/doi/pdf/10.1190/segam2012-1443.1
https://library.seg.org/doi/pdf/10.1190/segam2012-1443.1
https://library.seg.org/doi/pdf/10.1190/1.3627597
https://library.seg.org/doi/pdf/10.1190/segam2015-5925748.1
https://library.seg.org/doi/pdf/10.1190/segam2015-5925748.1
https://library.seg.org/doi/pdf/10.1190/1.3063790


[102] V. Kumar and F. J. Herrmann, “Deconvolution with curvelet-domain spar-
sity,” in SEG Technical Program Expanded Abstracts 2008. 2008, pp. 1996–
2000. eprint: https://library.seg.org/doi/pdf/10.1190/1.3059287.

[103] D. Donno, H. Chauris, and M. Noble, “Curvelet-based multiple prediction,”
GEOPHYSICS, vol. 75, no. 6, WB255–WB263, 2010. eprint: https://doi.
org/10.1190/1.3502663.

[104] M. Naghizadeh and M. Sacchi, “Ground-roll attenuation using curvelet down-
scaling,” GEOPHYSICS, vol. 83, no. 3, pp. V185–V195, 2018. eprint: https:
//doi.org/10.1190/geo2017-0562.1.

[105] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable
multiscale transforms,” IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 587–607, Mar. 1992.

[106] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li, “Deep
learning for content-based image retrieval: A comprehensive study,” in Pro-
ceedings of the 22nd ACM international conference on Multimedia, ACM, 2014,
pp. 157–166.

[107] M. Billinghurst, A. Clark, G. Lee, et al., “A survey of augmented reality,”
Foundations and Trends® in Human–Computer Interaction, vol. 8, no. 2-3,
pp. 73–272, 2015.

[108] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J.
Garcia-Rodriguez, “A review on deep learning techniques applied to semantic
segmentation,” arXiv preprint arXiv:1704.06857, 2017.
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