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Understanding Earth’s subsurface structures has been and con-
tinues to be an essential component of various applications 
such as environmental monitoring, carbon sequestration, 

and oil and gas exploration. By viewing the seismic volumes that 
are generated through the processing of recorded seismic traces, 
researchers were able to learn from applying advanced image 
processing and computer vision algorithms to effectively ana-
lyze and understand Earth’s subsurface structures. In this article, 
we first summarize the recent advances in this direction that 
relied heavily on the fields of image processing and computer 
vision. Second, we discuss the challenges in seismic interpreta-
tion and provide insights and some directions to address such 
challenges using emerging machine-learning algorithms.

Introduction
Seismic interpretation is a critical process in subsurface explora-
tion. The process aims at identifying structures or environments 
of significant importance in diverse applications. For example, 
for oil and gas exploration, a successful interpretation can help 
identify structures (such as faults, salt domes, and horizons, etc.) 
that are indicators of potential locations of reservoirs. Reliable 
delineation of natural faults and fractures will help predict crucial 
geologic deformation events and monitor potential earthquakes. 
In environmental engineering, capture and storage of carbon 
dioxide (CO2) is substantially dependent on accurate subsurface 
interpretation to find a good geologic trap with minimum leakage 
probability. When subsurface structures are the primary interest 
in seismic interpretation, it is often called structural interpreta-
tion. However, when environments such as patterns of deposition 
are of concern, it is then called stratigraphic interpretation. In 
this article, we focus on structural interpretation.

Typically, interpreters first assume a geological model based 
on the analysis of various attributes of the data, in addition to 
the geological history of the region. They then manually seg-
ment the data volume into subvolumes based on the dominant 
structures contained within each subvolume. Thereafter, inter-
pretation is performed to delineate various subsurface struc-
tures of interest. Based on the results, the geological model is 
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modified, and the process is repeated until 
the interpreters converge on a geologically 
plausible and reasonably accurate model. 
Such process is increasingly becoming more 
time-consuming and labor intensive with the 
explosive growth in data. Seismic surveys 
have grown over the years in both complexity 
and data sizes. Data sizes from such surveys 
have increased from hundreds of megabytes 
of the first three-dimensional (3-D) seismic 
survey collected in the 1970s to thousands of 
gigabytes, or even terabytes, today. To tack-
le this challenging situation, automated or 
semiautomated interpretation through com-
putational algorithms has been investigated.

For years, image processing theories and algorithms have 
been employed in seismic interpretation and made essential con-
tributions to the field. Given the richness and fast progress in 
image processing as well as related areas of computer vision and 
machine learning, there remains significant room to explore their 
impact on achieving a higher level of automation in seismic inter-
pretation. Equally important, we believe that seismic interpreta-
tion is a challenging problem that continues to have an impact on 
the advancement of image processing and related fields.

Although a deep understanding of and training in geophys-
ics have been considered prerequisites for developing effective 
computational interpretation algorithms, the recent progress in 
machine learning has shined a new light toward the roles that this 
field can play in domain-specific problems. We believe that, in 
essence, seismic interpretation fits very well into a generalized 

pipeline for knowledge discovery through 
imaging applications, in a similar way to that 
of natural scene analysis and medical imaging 
analysis. This is illustrated in Figure 1, where 
all of these processes share a similar pipeline 
that consists of modules for acquisition, pro-
cessing, and analysis. For the seismic case, 
the acquisition is fulfilled by sensing devices 
such as geophones for land surveys, which 
collect seismic waves reflected by subsurface 
structures, caused by a controlled seismic 
source of energy (e.g., a seismic vibrator). The 
acquired signals then go through advanced 
signal- and wave-equation-based process-
ing (normally prestack migration) to yield 

data for the stage of analysis, where seismic interpretation takes 
place. Such a framework aims at transforming a certain physical 
phenomenon into signals that can be analyzed to understand that 
phenomenon. The differences lie in the methodologies within 
each module and the underlying designs that accommodate the 
physical principles behind the phenomena being observed, which 
impose certain constraints on the properties of the signals.

The focus of this article is to present the seismic interpreta-
tion in the framework of the generalized pipeline for imaging 
data analysis, where both human-visual-system (HVS)- and 
learning-based models have the potential to assist in discovering 
underlying structures that may not have been discovered other-
wise. The seismic interpretation pipeline can be redesigned as a 
labeling problem, modeling after the natural scene labeling prob-
lem. Moreover, interpretation algorithms can be designed based 
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Figure 1. An analogy between seismic interpretation, natural scene analysis, and medical imaging analysis. MRI: magnetic resonance imaging. CT: com-
puted tomography. 
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on human visual attention models, mimicking the process of a 
human interpreter perceiving and analyzing a large volume of a 
seismic data set. We hope that this article will make the challeng-
es found in seismic interpretation more accessible to the signal 
processing community. The start-up tools and data sets provided 
here will enable the interested readers to get a jump-start in this 
domain, especially if they do not have a background in geophys-
ics. Furthermore, analyzing the seismic volume from the HVS 
point of view can unveil excellent opportunities that may not 
exist otherwise. Finally, solving challenges that are rooted in the 
unique characteristics of seismic data will help advance the cor-
responding signal processing and machine-learning theories and 
algorithms as well.

Subsurface structures and data sets
Before proceeding to the review of common interpretation tasks, 
in this section, we provide a brief introduction to several sub-
surface structures of interest, followed by a list of data sets that 
are commonly used for developing and testing the algorithms. 
Throughout this article, we will use oil and gas exploration as 
the example to illustrate subsurface understanding through seis-
mic interpretation for a number of reasons. Compared to other 
applications, data is more abundantly available with oil and gas 
exploration. Also, there is rich literature on this subject with vari-
ous contributions that can provide a benchmark. Furthermore, 
the depth of the imaged subsurface is deeper in the application of 
consideration, and that adds to the complexity of the structure to 
be interpreted. Therefore, the structures and data sets introduced 
here are typically related to hydrocarbon reservoir identification 
and characterization, although some of them can also be used 

for other applications such as earthquake monitoring and envi-
ronmental engineering, which is a common practice in the com-
munity. Nevertheless, all reviewed and proposed algorithms are 
applicable in all applications that image the subsurface to locate 
certain structures.

Common subsurface structures
Subsurface structures are complex because of the massive 
geologic evolution and deformation over millions of years. A 
migrated seismic volume, therefore, can contain multitudes of 
geologic structures such as horizons, unconformities, faults, salt 
domes, channels, and gas chimneys. Horizons, represented as 
seismic reflections, are the dominant geologic structures appar-
ent in a seismic volume while the other structures can often be 
recognized as discontinuities or edges of seismic reflections. 
We will focus the discussion in this article on the interpretation 
of faults, salt domes, channels, and gas chimneys. Examples are 
shown in Figure 2. All of these structures are of great geologi-
cal implications for hydrocarbon migration and accumulation 
as discussed next.

Faults
A fault is defined as a lineament or planar surface across which 
apparent relative displacement occurs in the rocks’ layers. The 
movement of impermeable rocks and sediments along the fault 
surface creates membranes that hinder the migration of hydro-
carbons from source rocks and create structural hydrocarbon 
traps. Because of the lateral changes in texture across a fault, 
interpreting such structures can be treated as an edge detection 
problem that is common in digital image processing. How-

ever, different from edges in natural 
images, faults do not always display 
explicit edges, and the visual appear-
ance is typically noisy.

Salt domes
A salt dome is defined as a dome-shaped 
structure formed by the evaporation of a 
large mass of salt in sedimentary rocks. 
Salt domes are impermeable structures 
that prevent the migration of hydrocar-
bons and provide entrapment for oil and 
gas reservoirs. Chaotic reflections are 
often observed in a salt dome in a form 
of a distinct texture; thereby interpret-
ing such structures can be treated as a 
texture segmentation problem in digital 
image processing. Nevertheless, in salt 
domes, the boundaries are not explicit 
due to the underlying physics as well as 
noise and low-resolution data.

Channels
A channel is defined as a remnant of 
an inactive river or a stream channel 
that has been either filled or buried by 
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Figure 2. Examples of four types of subsurface structures essential for hydrocarbon exploration.
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younger sediment. Channels, as well as the associated deposi-
tional features such as overbanks, lobs, and fans, are important 
targets of seismic interpretation because river/stream flows often 
carry sands of high porosity and permeability that are superior 
traps for hydrocarbon accumulation. Such rock difference gives 
channels a unique, distinct texture, similar to salt domes; mean-
while, considering its meandering spatial distribution, interpret-
ing such structures can be treated as a curve boundary detection 
and tracking in digital image processing.

Gas chimneys
A gas chimney is defined as the leakage of gas from a poorly 
sealed hydrocarbon accumulation in the subsurface. Gas chimneys 
are often used as a robust hydrocarbon indicator, which implies 
present or previous vertical migration of hydrocarbons or fluids 
containing hydrocarbons between different geologic sequences. 
In a seismic profile, a gas chimney is visible as a vertical zone 
of poor data quality or push-downs. Therefore, a gas chimney is 
often featured with a distinct texture. Correspondingly, similar to 
salt domes, interpreting such structures can be treated as a texture 
segmentation problem in digital image processing.

Common geophysical data sets
High-quality seismic data are essential for accurate subsur-
face interpretation with broad applications to both industrial 
applications (e.g., oil and gas exploration) and environmental 
studies (e.g., earthquake monitoring and CO2 storage). Driven 
by the oil and gas industry, 3-D seismic data have been wide-
ly collected around the world in the past few decades, par-
ticularly in the areas with high hydrocarbon potential, such 
as the North Sea, the Middle East, and the Gulf of Mexico. 
Such data were often confidential during the initial stage of 
reservoir exploration and production but are then released 
for public use when the production goal has been achieved. 
Table 1 lists seven seismic data sets that are commonly used 
for developing and testing interpretation algorithms. The 
table includes the geographical location of the surveys, the 

dominant subsurface structures, the data size, as well as the 
spatial dimensions. The first six data sets are available in the 
typical SEG-Y format, which can be loaded directly using any 
geophysical exploration software (e.g., OpendTect and Petrel) 
or popular programming packages such as MATLAB and 
Python. Large North Sea Data Set of Migrated Aggregated 
Seismic Structures (LANDMASS) is available in the MAT-
LAB MAT-File format and provides a large number of image 
patches generated from the F3 block to facilitate structure-
based seismic interpretation and machine-learning studies. 
All links to these data sets and other resources can be found 
at https://ghassanalregib.com/datasets-and-resources-for-
computational-seismic-interpretation/.

Subsurface event detection and tracking
A successful reservoir exploration requires a reliable identifica-
tion of indicative subsurface structures as introduced in the previ-
ous section. Consequently, the majority of existing interpretation 
algorithms focus on detecting such structures or events in geo-
physical terms. We have recently proposed an additional task that 
tracks such structures by creating a semiautomated interpretation 
workflow. In this section, we review these methods for each of 
the four key structures, respectively. A depiction of all such algo-
rithms is shown in Figure 3.

Fault detection
In a two-dimensional (2-D) seismic section, faults indicate dis-
placements along fractures, as observed in Figure 2. Because of 
the geological constraints that are associated with the formation 
process, faults have two specific features. One is the geological 
feature, which is the discontinuity along horizons. The other is 
the geometric feature, i.e., line-like or curved shapes in 2-D seis-
mic sections, which appear as curved surfaces in a 3-D seismic 
volume. Computational fault detection methods are commonly 
developed based on these two features. The discontinuity of 
faults can be characterized by several seismic attributes such as 
entropy [2], curvature [3], and coherence [4]–[6]. Among them, 

Table 1. List of commonly used data sets for interpretation [1].

Data set and Location Dominant Structures Size Domain Dimensions 

F3 block in The 
Netherlands, North Sea

Salt domes (~1,500 ms); faults (~1,200 
ms); gas chimneys (~500 ms)

494 MB Time Inline: 651, Crossline: 951, Samples/trace: 463 

Stratton field in south 
Texas, United States 

Channels (~845 ms); faults (~2,000 ms) 122 MB Time Inline: 100, Crossline: 200, Samples/trace: 151 

Teapot Dome in 
Wyoming, United States 

Faults (~5,500 ft) 421 MB Depth Inline: 345, Crossline: 188, Samples/trace: 1,601 

Great South Basin in  
New Zealand 

Faults (~2,000 ms) 38.1 GB Time Inline: 1241, Crossline: 2,780, Samples/trace: 
751

Waka Basin in New  
Zealand 

Channels (~1,800 ms) 23.2 GB Time Inline: 801, Crossline: 5,756, Samples/trace: 
1500

SEAM synthetic data set Salt domes (~2,000 ms) 4.2 GB Time and 
depth

Inline: 1169, Crossline: 1,002, Samples/trace: 
851

LANDMASS data set from 
F3 block 

Horizons, chaotic reflections, faults and 
salt domes

0.95 GB Time Horizon patches: 9,385, chaotic patches: 5,140, 
fault patches: 1,251, salt-dome patches: 1,891
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coherence is the most popular one for highlighting faults. 
Marfurt et al. [4] calculated coherence by comparing the dis-
similarity of local regions on the two sides of a fault. Later, 
Gersztenkorn and Marfurt [5] proposed the eigenstructure-
based coherence, which analyzes the eigenstructure of cova-
riance matrices of windowed seismic traces. Recently, a 
generalized-tensor-based coherence (GTC) attribute [7] has 
been proposed. The GTC of every voxel in a seismic volume 
is calculated within a local analysis cube with the size of 

,I I I1 2 3# #  which can be represented by a third-order ten-
sor, denoted by .RA I I I1 2 3! # #  Unfolding A  along three 
modes generates matrix ,A R( )i

I Ii jj i! #
!

%  , , .i 1 2 3=  Using 
an eigenstructure analysis on the covariance matrix of unfold-
ing matrix ,A( )i  the coherence attributes of three modes are 
obtained as follows:

/ ( ) / ( ) ( ) ,C A AE Tr Tr 1 1( ) ( ) ( )
( ) ( )c

i i
i

i
i i i

T
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where E( )
c
i  is the coherence attribute of mode-i, and ( )i

1m  repre-
sents the largest eigenvalue of covariance matrix .Ci  In addition, 
1i  is a matrix of ones with a size of ,I1 j i j#P !  n  defines the 
mean of all columns in A( )i , and 7 represents the Kronecker 
product. If we take ,E( )

c
i  i = 1, 2, 3, as the R, G, and B chan-

nels of a color image, we arrive at the GTC attribute. In contrast 
to [5], GTC enhances the details of seismic data and allows a 

better fine-tuning and more flexibility to interpreters. In some 
cases, depending on one seismic attribute does not produce accu-
rate fault delineation. Therefore, enhancement operations such 
as nonlinear mapping and structure-oriented filtering [8] may be 
applied to increase the contrast between faults and surrounding 
structures. In addition, combining various attributes [9] is anoth-
er common practice in fault interpretation.

In the attribute space, likely fault regions are commonly spec-
ified using a hard threshold or selected from local maxima. In the 
work of Hale [10], faults points with the largest fault likelihoods 
are selected and connected to construct meshes of quadrilaterals, 
which are further used to form fault surfaces. However, likely 
fault regions that may inevitably involve noisy structures are not 
able to accurately reveal the details of faults. To solve this prob-
lem, interpreters utilize the geometric feature of faults. Because 
of the continuous curved shapes of faults, ant tracking or ant col-
ony optimization algorithm [11] has become a popular method 
for fault detection. Recently, Wu and Hale [12] proposed to use 
a simple linked data structure that includes the fault likelihood, 
dip, and strike to construct complete fault surfaces. In addition, 
Hough transform, a mapping procedure between attribute vol-
umes and the parameter space, has been widely used to detect 
lines, circles, planes, and other parametric shapes. Therefore, 
Wang and AlRegib [13] proposed to delineate faults using line-
like features extracted by the Hough transform. Figure 4 illus-
trates the diagram of the proposed method, in which authors 
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first highlight likely fault points by applying a hard threshold on 
the discontinuity map and then extract line-like yellow fault fea-
tures using the Hough transform. Because of the limitation of 
the Hough transform, it is inevitable that detected results contain 
some false features that violate certain geological constraints. On 
the basis of their appearance, false features are classified into two 
types: outliers, which are isolated from the others, and neighbor-
ing groups, which contain similar features located nearby. 

In Figure 4, the red line is fitted from all midpoints of fault fea-
tures. Therefore, features with larger distances to the fitted fault are 
treated as outliers and discarded. In contrast, features in a neigh-
boring group will be merged into one fault feature. After false 
feature removal, the remaining features are connected using blue 
lines to implement the delineation of faults. In [13], some postpro-
cessing steps are implemented to improve the accuracy of fault 
delineation. The same concept of Hough transform has also been 
applied to extract fault planes from discontinuity volumes [14].

Salt-dome detection
To detect salt domes, over the past a few decades, researchers 
have proposed various seismic attributes and automated work-
flows based on edge detection, texture, machine learning, graph 
theory, active contours, and other techniques. Aqrawi et al. [15] 
proposed a Sobel edge-detection-based approach that delineates 
salt domes within the Gulf of Mexico data set. Amin and Deri-
che [16] proposed an approach that highlights small variations 
in seismic data by detecting edges not only along the x, y, and 
z directions but also slanted at 45c and .45c-  The 2-D Sobel 
filters along 45c and 45c-  are shown as follows:
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Berthelot et al. [17] proposed a Bayesian classification approach 
for detecting salt bodies using a combination of seismic attributes 
such as dip, similarity, frequency-based attributes, and attributes 
based on the gray-level co-occurrence matrix (GLCM). A work-
flow based on seismic attributes and a machine-learning algo-
rithm (i.e., extremely random trees ensemble) that automatically 
detects salt domes from the Society of Exploration Geophysicists 
(SEG) Advanced Modeling (SEAM) data set is presented in [18]. 
Amin and Deriche [19] proposed a supervised codebook-based 
learning model for salt-dome detection using texture-based attri-
butes. Di et al. [20] proposed an interpreter-assisted approach 
based on the k-means clustering of multiple seismic attributes that 
highlights salt-dome boundaries in the F3 block. Shafiq et al. [21] 
proposed a seismic attribute called SalSi, which highlights salient 
areas of a seismic image by comparing local spectral features 
based on the 3-D fast Fourier transform. Chopra and Marfurt [22] 
proposed a seismic disorder attribute to assess randomness and 
the signal-to-noise ratio (SNR) of data to delineate seismic struc-
tures such as faults and salt domes. Wu [23] proposed methods 
to compute salt likelihoods highlighting salt boundaries, extract 
oriented salt samples on ridges of salt likelihoods, and construct 
salt boundaries with the salt samples by solving a screened Pois-
son surface reconstruction problem.

With most of the aforementioned algorithms, the underly-
ing assumption is that a salt-dome body can be recognized by 
comparing neighboring planes. Thus, capturing the textures of 
such planes has been a very effective methodology to delineate 
salt-dome bodies. To show the effectiveness of texture-based 
approaches for detection of salt domes, the brief details of a seis-
mic attribute, 3-D gradient of textures (3D-GoT) by Shafiq et al. 
[24], which describes the texture dissimilarity between neighbor-
ing cubes around each voxel in a seismic volume across time (or 
depth), crossline, and inline directions is presented in this section. 

Outlier
Removal

Neighboring
Group

Combination

Outlier

Neighboring
Group

False Feature Removal

Fault Features

Fault Labeled
by Remaining

FeaturesSeismic Section

Discontinuity Map

Likely Fault Points

Fitted Fault

Hough
Transform

20
40
60
80

100
120
140
160

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

Figure 4. The diagram of the proposed fault detection method, which utilizes the Hough transform to extract fault features and remove false ones using 
geological constraints.



88 IEEE Signal Processing Magazine   |   March 2018   |

Figure 5(a) illustrates synthetic seismic images in which a green-
dashed vertical line separates two textured regions depicted in 
dotted and striped lines, respectively. To evaluate the GoT in the 
x-direction (i.e., the crossline), as the center point and its two 
neighboring cubes move along the blue line, texture dissimilarity 
function (·)d  yields a GoT profile shown at the bottom of Fig-
ure 5(a). Theoretically, the highest GoT value corresponds to the 
highest dissimilarity and is obtained when the center point falls 
exactly on the texture boundary. Similarly, GoT is also calculated 
along t- (time or depth) and y- (inline) directions. To improve the 
delineation efficiency and robustness, GoT employs a multi-
scale gradient expressed as follows:
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where Wi
n
-  and Wi

n
+  denote the neighboring cubes, n represents 

the edge length of cubes, and n~  represents the weight associated 
with each cube size. To compute dissimilarity between cubes, 
authors use a perceptual dissimilarity measure based on error 
magnitude spectrum chaos, which is not only computationally 
less expensive and performs better than nonperceptual dissimi-
larity measures, but also highlights texture variations in the most 
effective manner. The perceptual dissimilarity measure is calcu-
lated as follows:
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where U represents the tensor product, K  is the Kronecker 
matrix defined as ,D D DK t x y7 7=  and ,,D Dt x  and Dy  are 

discrete Fourier transform matrices. The output of various salt-
dome delineation algorithms on a typical seismic inline and a salt 
body detected using 3D-GoT [24] from the F3 block in the North 
Sea are shown in Figure 5(b) and (c), respectively.

Fault and salt-dome tracking
The methods introduced in the previous two sections focus 
mainly on the detection, or delineation, of faults and salt 
domes in 2-D sections. To investigate the geological structures 
of faults and salt domes, interpreters need to repeatedly apply 
these methods on each section of a seismic volume. However, for 
a seismic volume with a large size, the repeated detection in every 
section may impair interpretation efficiency. Because of the slow 
formation processes of subsurface structures, neighboring sec-
tions commonly have strong correlations. In recent years, fault 
and salt-dome tracking methods have been proposed to utilize 
correlations between sections to improve interpretation efficien-
cy. Reference [13] borrows the concept of motion vectors in video 
coding and grouped seismic sections into reference and predicted 
sections. Faults in the predicted sections can be labeled by detec-
tion results in reference sections. Berthelot et al. [25] detected 
the salt-dome boundary in one time section using the method 
in [17] and tracked the boundary through adjacent sections by 
minimizing a defined energy function that maintains boundar-
ies’ curvature and smoothness. Similarly, [26] takes advantage 
of active contour to track salt-dome boundaries in neighboring 
seismic sections. More recently, Wang et al. [27] have proposed a 
salt-dome tracking method that extracts the features of salt-dome 
boundaries in reference sections using tensor-based subspace 
learning and delineates tracked boundaries by finding points 
in predicted sections, which are the most similar to reference 

Figure 5. (a) Computing GoT along the crossline, i.e., x-direction. (b) Salt-dome boundary detected by various delineation algorithms; magenta [15], 
black [19], blue [24], green: reference salt-dome boundary. (c) A 3-D salt body detected from the F3 block in the North Sea using 3D-GoT [24]. 
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ones. Figure 6 illustrates the diagram of feature extraction pro-
cess using tensor-based subspace learning adopted for salt-dome 
tracking. Authors manually label the boundaries of salt domes in 
Nr  reference sections, in which /N N 2c r= ^ h is the central one. 
For each point in the labeled boundary of ,Nc  its correspond-
ing points in neighboring ( )N 1r -  reference boundaries are 
identified. Since every point corresponds to a patch with the 
size of ,N Np p#  stacking corresponding patches constructs 
third-order texture tensors from reference sections, denoted 

,, , , ,k K1 2RAk
N N N

N
p p r

cf! =# #" ,  where KNc  represents 
the number of points in the N thc  reference boundary. Because 
of strong correlations between neighbors, every point in the 
N thc  reference boundary corresponds to a tensor group, denot-
ed , , , , ,A AG Ak k N k k Ns sff= - +" ,  which contains N2 1s +  
tensors. Using multilinear dimensionality reduction methods 
such as multilinear principal component analysis and tensor-
based linearity projection preserving, one can obtain transfor-
mation matrices ,U( )

k
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k
2  and U( )

k
3  and map tensor group Gk  

to its subspace as follows:
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where , , ,i 1 2 3i# =  denotes the i-mode product of a tensor by 
a matrix, and tensor Amu  with fewer dimensions in each mode 

contains the features of reference boundaries. These extracted fea-
tures can help identify tracked boundary points in predicted sec-
tions. The local and global comparison of the tracked boundary 
(green) with the manually labeled one (red) shows the high simi-
larity and accuracy of salt-dome tracking within seismic volumes.

Channel detection
The variety of rocks that are deposited in a channel system change 
the acquired seismic signals, and, thereby, a channel system can 
be detected by applying the common edge detection methods on 
horizontal slices or well-picked horizon surfaces. For example, 
the coherence attribute [28], [29] was first proposed for identify-
ing the morphology of a channel system, and then a suite of new 
attributes and algorithms have been developed for enhancing both 
detection accuracy and noise robustness. However, while success-
fully highlighting the channel boundaries, such discontinuity anal-
ysis fails to depict the rock properties within the channel system, 
as no such information is considered by the detection operators. 
To overcome this limitation, the GLCM analysis was introduced 
from the field of image processing and used for seismic facies 
analysis [30]. Eichkitz et al. [31] presented a suite of algorithms 
for generating ten different GLCM attributes from a seismic 
cube. Di and Gao [32] made it possible to decompose a chan-
nel system by integrating the logistic/exponent gray-level trans-
formations with the GLCM attributes. Machine-learning-based 
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Figure 6. The diagram of salt-dome tracking, in which features around salt-dome boundaries in reference sections are extracted by tensor-based sub-
space learning.
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facies analysis has gained popularity, particularly for a deposition 
system with complexities, and automatically classified all subtle 
structures, including the meandering channel, overbanks, fans, 
and lobs. The use of computational classification began soon after 
the development of seismic attributes in the 1970s with the work 
by Justice et al. [33]. Barnes and Laughlin 
[34] reviewed several unsupervised classifi-
cation techniques, including k-means, fuzzy 
clustering, and self-organizing maps (SOMs) 
and emphasized the importance of seismic at-
tributes over the classifiers. Wallet et al. [35] 
developed the generative topographic map-
ping for unsupervised waveform classifica-
tion. Song et al. [36] combined multilinear 
subspace learning with the SOMs for im-
proved seismic facies analysis in the presence 
of noise. A comprehensive study of both su-
pervised and unsupervised facies analysis can 
be found in [37]. With these depositional fea-
tures in a channel system well differentiated 
by either seismic attributes or facies analysis, 
they could then easily be extracted as sepa-
rate geobodies by seeded tracking. However, 
reliable differentiation of various depositional 
features (e.g., overbank, delta, and levee) remains challenging, 
due to the proximity and overlying distribution in space between 
each other and, more importantly, their similar reflection patterns 
in 3-D seismic data. Such a goal can be achieved by analyzing the 
seismic images at a smaller scale to capture the subtle differences 
between various features.

Gas-chimney detection
In seismic sections, a gas chimney is visible as vertical zones of 
poor data quality, chaotic reflections, or push-downs. Therefore, 
it can be detected using attributes similar to those used for salt-
dome detection, such as the coherence [28] and the GoT [24]. The 
major difference of gas chimneys is the sparse distribution in a 
seismic volume, and thereby manual identification and interpre-
tation of them is labor intensive, and the conventional tracking 
tools described in the section “Fault and Salt-Dome Tracking” 
may also fail in detecting the chimneys that are isolated from each 
other. However, the machine-learning-based approach offers an 
efficient solution to such limitation. For example, Heggland et 
al. [38] combined a set of seismic attributes and the multilayer 
perception (MLP) to create a chimney cube for a semiautomatic 
detection, which has been applied to multiple data sets, such as 
the F3 block [39] and the Taranaki basin in New Zealand [40]. In 
recent years, researchers also have tried more advanced machine-
learning algorithms. For example, Xiong et al. [41] applied adap-
tive boosting (AdaBoost) to the design of the optimal learning 
algorithm for identifying gas chimneys, which generated more 
reliable results than the k-nearest neighbor method. Xu et al. [42] 
implemented the sparse autoencoder for gas-chimney detection, 
and the accuracy is greatly improved compared to the traditional 
MLP algorithm. The sparsity of the spatial distribution of gas 
chimneys in a seismic data set adds the difficulty of reliable 

gas-chimney detection in two ways. First, it limits the amount of 
training data, and thereby the performance of supervised learn-
ing may be affected. Weakly supervised and unsupervised meth-
ods would be more applicable. Second, it increases the sensitivity 
to seismic noise. Reflection pattern-based learning could help 

improve the noise robustness of gas-chim-
ney detection, such as the chaotic labeling 
described in the next section given the chaotic 
reflections in a gas chimney.

Subsurface labeling and classification
In the previous section, we provided a review 
of seismic interpretation for subsurface event 
detection and tracking. Although the tech-
niques have significantly reduced the time 
and effort required for manual interpretation, 
there is at least one aspect involved that is still 
done manually, namely, the manual process 
of extracting subvolumes from a given data 
volume based on their dominant subsurface 
structure, so that detection or tracking can 
be performed on the extracted data. In this 
section, we discuss a framework we recently 
developed to address this issue. With this 

framework, we attempt to eliminate the aforementioned bottle-
neck and streamline the interpretation process by building on the 
recent advances in semantic segmentation and scene labeling.

General framework
Seismic volume labeling is the process of classifying each 
voxel in a given seismic volume into one of many predefined 
structures. This process can help classify entire seismic vol-
umes into regions of interest that contain specific subsurface 
structures. These regions can then be extracted, and various 
interpretation algorithms can be applied to these regions for 
more refined results.

While a variety of influential works have been proposed in 
the area of semantic segmentation [43]–[47], seismic data pres-
ents challenges that cannot be immediately solved by the exist-
ing methods. First, unlike natural images, where edges between 
objects are well defined, edges between subsurface structures 
in seismic data are either not well defined or are characterized 
by a change in overall texture rather than a sudden change in 
amplitude. Second, unlike natural images, seismic data is gray 
scale, and, thus, color features cannot be used to distinguish 
various structures. Furthermore, there is a severe lack of both 
labeled seismic data for training and well-established bench-
marks for testing various learning-based approaches. This is 
partly due to the intellectual property concerns in the oil and 
gas industry. Also, because of the lack of ground truth and the 
subjective nature of manual interpretation, it is often difficult 
for different geophysicists to agree on the same interpretation 
for a given volume.

Naturally, machine-learning techniques are well suited 
approaches for seismic volume labeling. However, the lack of 
labeled training data poses a significant challenge. To tackle this 

The focus of this 
article is to present the 
seismic interpretation 
in the framework of the 
generalized pipeline for 
imaging data analysis, 
where both human visual-
system- and learning-
based models have the 
potential to assist in 
discovering underlying 
structures that may not 
have been discovered 
otherwise.
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problem, we have generated the LANDMASS [48] data set that 
contains more than 17,000 seismic images extracted from The 
Netherlands North Sea F3 block [49]. The images are grouped 
into four classes based on the subsurface structure they 
contain: horizons, chaotic horizons, faults, and salt 
domes. Although the data set contains these 
specific structures, the framework for seismic 
labeling discussed next can be extended to 
other seismic structures as well.

In [50], Alaudah and AlRegib proposed 
using reference exemplars and seismic im-
age retrieval to label seismic volumes in 
a weakly supervised fashion. First, given 
a few hand-selected exemplar images, 

[ , , , ],X x x xN1 2 ef=  that contain subsurface 
structures belonging to the different classes of 
interest, an augmented data set, Xu , is gener-
ated in an unsupervised fashion using similarity-based retrieval. 
This is done to obtain enough data to train a supervised machine-
learning model. Then, various features or attributes are extracted 
from these images to train a classifier. The section “Oversegmen-
tation of Seismic Volumes” describes seismic volume segmenta-
tion and its use to enforce the local spatial correlation of the labels 
and improve the computational efficiency of the approach. Fi-
nally, the sections “Labeling of Seismic Volumes” and “Weakly 
Supervised Pixel-Level Annotation” describe various methods 
to obtain the final labeling of the seismic volume. The overall 
framework is outlined in Figure 7.

Building blocks
In the remaining part of this section, we describe the major com-
ponents of this weakly supervised approach for seismic vol-
ume labeling.

Texture attributes for seismic labeling
Seismic images are often well characterized by texture features, 
or texture attributes, mainly because they are textural in nature. 
A few classical texture attributes were explored for traditional 
tasks such as salt-dome detection, but they need to be further 
examined in the context of seismic labeling. In addition, there are 
a great number of advanced texture features developed in recent 

years for image analysis. They are also potential candidates for 
the labeling task.

When applied to image processing problems, it is usually 
desirable for a texture attribute to possess properties such as 
illumination-, rotation-, and scale-invariance for better robust-

ness. However, with seismic data, this is not 
always the case. For example, a vertical slice 
of a seismic volume (or a seismic section) is 
characterized by strong directionality, with 
horizons typically extending in the horizontal 
direction and faults in the vertical direction. 
In such cases, being rotation-invariant is no 
longer a critical requirement for the attributes. 
Another important difference between a seis-
mic image and a natural texture image is that 
some subsurface structures (e.g., faults) are 
of very fine-scale along certain dimensions, 

which is not typical with natural textures. Thus, it is important for 
a texture attribute to be able to capture such fine details.

Recently, some comparative studies were conducted to exam-
ine various texture attributes in the context of seismic volume 
labeling. In one study, the focus was on a group of spatial attri-
butes from the family of local descriptors, including the local 
binary pattern, a few of its typical variants, and the local radi-
us index [51]. These attributes can represent texture patterns 
with robustness and computational efficiency. For comparison 
purposes, the study also included two traditional seismic attri-
butes in the spatial domain, i.e., the GLCM and the semblance. 
According to the study, the local descriptors and the GLCM are 
all good attributes for labeling seismic volumes. However, each 
attribute displayed different characterizing capabilities for differ-
ent subsurface structures. Thus, they should be selected accord-
ingly if there is a preference for certain structures to be labeled 
with more reliability.

In a separate study [52], multiresolution attributes in the fre-
quency domain were examined for seismic volume labeling, 
including the discrete wavelet transform and its nonsubsampled 
version, Gabor filters, the steerable pyramid, the contour-
let transform and its nonsubsampled counterpart, and the curve-
let transform. Effective singular values are extracted from each 
transformed subband and then concatenated into a feature vector. 
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Figure 7. A block diagram illustrating the weakly supervised seismic volume-labeling approach described in the section “Subsurface Labeling and 
Classification.”

The ultimate goal of 
seismic volume labeling 
is to efficiently and 
accurately classify entire 
seismic volumes based 
on their subsurface 
structures such as those 
shown in Figure 8.
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The major conclusion from the study is that 
the directional transforms perform better 
than the nondirectional ones, with the curve-
let transform being the best.

Similarity-based retrieval
The attributes described in the previous 
section are used in the feature extraction step of the workflow 
depicted in Figure 7. Also, these features can be used to devise 
similarity measures specialized for seismic images (e.g., [53]–
[55]) to be used in the similarity-based retrieval to generate the 
augmented data, Xu . Note that texture-based image similar-
ity metrics are different from the generic fidelity and distance 
measures (also known as quality metrics, such as peak SNR and 
mean square error), in that they capture the content of an image 
rather than assuming a pixel-to-pixel correspondence.

One particularly useful similarity measure was proposed in [55] 
for content-based image retrieval, especially for images that are 
highly textural such as seismic images. The proposed measure uses 
the singular values of the curvelet transform of an image to form a 
feature vector. Then, the similarity of any two images is computed 
as the Czekanowski similarity between their corresponding feature 
vectors as Similarity ( , ) vx x v v v11 2 1 2 1 1 2 1= - - + ,r` j  
where ,x x1 2 are the images and ,v v1 2 are their corresponding 
feature vectors. Since the singular values of real images are non-
negative by definition, the value of this similarity measure is in 
the range of [ , ]0 1 , where a value of one indicating the two images 
are identical.

With a proper similarity measure in hand and an exemplar 
image for each subsurface structure of interest, the training data 
is formed by retrieving images that are most similar to the exem-
plar image. The training data set is then used to train a machine-
learning model as will be detailed in the section “Labeling of 
Seismic Volumes.”

Oversegmentation of seismic volumes
An important part of the workflow in Figure 7  
is the seismic volume oversegmentation. 
Segmentation algorithms, like normalized 
cuts [56], are often used in computational 
seismic interpretation to extract subsurface 
structures [57]–[59]. However, oversegmen-

tation here is used as a preprocessing step to enforce local spatial 
correlation by grouping voxels in the volume that are similar 
and close to each other. Here, the lack of clearly defined edges 
between subsurface structures is inconsequential, and instead, 
each small segment is classified based on its texture content. 
This step also significantly reduces the computational cost of 
the labeling, since each segment will be classified once, and the 
resulting label will then be propagated to all the voxels within 
that segment.

Graph-based oversegmentation techniques (such as graph 
cuts [60] and normalized cuts [56]) or gradient ascent-based 
approaches (such as the watershed algorithm [61] and turbo pix-
els [62]) are computationally expensive, and therefore not suitable 
for large seismic volumes. Simpler, and more efficient techniques 
such as simple linear iterative clustering (SLIC) superpixels [63] 
are more appropriate for this application. Since SLIC clusters pix-
els in the CIELAB color space, while seismic images are gray 
scale, it is possible to obtain a good superpixel oversegmentation 
by replacing the A and B channels with the x- and y-gradients of 
the seismic image [50].

Once the oversegmentation is performed, features are extract-
ed from each segment, or from a group of segments centered 
around a reference segment. These features are later used to clas-
sify the voxels within these segments into one of the various sub-
surface structures that are of interest to the interpreter.

Labeling of seismic volumes
Once the augmented data Xu  is created using the methods 
described in the section “Similarity-Based Retrieval,” texture 
features can then be extracted from these images to train various 
machine-learning models for labeling the seismic volume. These 
models can be support vector machines, convolutional neural 
networks (CNNs), random forests, or any other machine-learning 
model suitable for this task. Once these models are trained, we 
can then extract texture attributes from each segment in the over-
segmented seismic volume and classify them. The resulting label 
is then propagated to all voxels within the segment.

The ultimate goal of seismic volume labeling is to efficiently 
and accurately classify entire seismic volumes based on their sub-
surface structures such as those shown in Figure 8. There will 
naturally be a tradeoff between the accuracy and the efficiency 
of any algorithm. However, it is better to obtain a rough labeling 
quickly, rather than an accurate labeling that is time-consuming. 
Other specialized techniques would later be used for the refined 
detection and tracking of the subsurface structures.

Weakly supervised pixel-level annotation
In the section “Similarity-Based Retrieval,” we have shown 
that similarity-based retrieval can be used to extract thousands 

(a)

(b)

Figure 8. (a) A weakly supervised labeled seismic section from The Nether-
lands North Sea F3 block. For reference, the manually labeled seismic section is 
shown in (b). The chaotic class is in blue, faults are in green, and the 
salt dome is in red.

To fully explore the 
potential of deep learning, 
there are a few open 
problems that need to be 
addressed carefully.
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of images that have the same subsurface structure to generate 
our augmented training data .Xu  The retrieved images are then 
assigned the same image-level label as the query image. While 
these image-level annotations can be used to train machine-learn-
ing models, recent work on weakly supervised labeling such as 
that proposed in [64] show that these image-level labels can be 
mapped into pixel-level labels that can be much more useful in 
training powerful fully supervised deep-learning models such as 
fully convolutional networks [44]. Figure 9 shows several exam-
ples of this mapping for various subsurface seismic structures.

The approach in [64] is based on nonnegative matrix factor-
ization (NMF) [65]. NMF is a commonly used matrix factor-
ization technique that is closely related to many unsupervised 
machine-learning techniques such as k-means and spectral clus-
tering [66]. NMF decomposes a nonnegative matrix X RN Np s! #

+
u  

into the product of two lower-rank matrices ,W RN Np f! #
+  and 

H RN Nf s! #
+  such that both W  and H  are nonnegative. In 

other words,

	     .X 0s.t. ,WH W H. $u � (6)

Here, N f  is the number of components (or the rank) of .Xu  In 
our work, Xu  represents the augmented data matrix from the sec-
tion “Similarity-Based Retrieval,” where each column is a single 
seismic image in vector form. The data matrix Xu  has Ns  such 
images, each of which is a vector of length Np . NMF factorizes 
this data matrix into two nonnegative matrices: a basis matrix W 
and a coefficient matrix H.

The regular NMF problem does not have an analytical solu-
tion, and is typically formulated as the following nonconvex opti-
mization problem:

	    ,X WH WHarg min 0 s.t.
,

F
2

W H
$- � (7)

where, · F  is the Frobenius norm. Lee et al. [67] showed 
that NMF can be used to learn a “parts-based” representa-
tion, where each feature would represent a localized “part” of 
the data. In practice, this is rarely achieved using the formula-
tion in (7). To remedy this, the feature matrix W  is initialized 
using k-means applied on each class in the data matrix Xu  sep-
arately. This initialization simplifies the feature learning and 
makes W  robust to mislabeled images in .Xu  Then, a sparsity 
constraint is imposed on these initial features using the follow-
ing sparsity measure:

	 ( ) ,w
w w

N

N

1p

p 1 2
t =

-

-
� (8)

where · 1  and · 2  are the l1  and l2  norms, respectively, and 
(·)t  indicates the sparsity of a vector. To enforce this constraint, 

we follow the algorithm proposed by [68]. Additionally, to make 
sure that each feature wi  in the matrix W represents a single class 
only, we impose an orthogonality constraint on the coefficients 
matrix H. We also add two regularization terms on W and H to 
avoid overfitting. The problem then becomes

(a) Original

(c) Original

(d) Labeled

(b) Labeled

Figure 9. Results of the weakly supervised pixel-level annotation approach in [64] for various subsurface structures. (a) shows images containing 
chaotic and fault structures and (b) shows their corresponding pixel-level labels in blue and green respectively. (c) and (d) show various images 
that contain salt-dome bodies or boundaries, and their corresponding pixel-level labels in red, respectively.
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where matrix B RN Nf f! #  contains random positive real num-
bers, and ,1m  ,2m  ,1c  and wt  are constants. To solve the problem 
in (9), the following multiplicative update rules for W, and H are 
derived, where

	
( )

( )
W

W H H W
W HXt
t t tT t

ij

t tT
ij1

1

9

m
=

+
+

u
� (10)

	
( )

( ( ) )
.H

W W H H H H H
H W H

and 
X B Bt

t T t t t tT t t
ij

t t T T t
ij1

1 1
1 2

1
19

c m

c
=

+ +

+ ++
+ +

+ u
� (11)

Here, 9 represents element-wise multiplication, and the super-
script indicates the iteration number. Once W and H are initial-
ized, the multiplicative update rules in (10) and (11) are applied 
successively until both W and H converge.

Once W and H have converged, each column of H and ,hn  
indicates the features used to construct the nth image. Since every 
feature in W should correspond to a single seismic structure, the 
coefficients of each image can then be mapped into the seis-
mic structures that make up that image. Thus, for every image 

[ , ]n N1 s!  we can obtain

	 ( ( ))      [ , ],n N11L W Q hn n N s1
finalfinal

l9 6 != # � (12)

where { , }0 1Q N Nf l! #  is a cluster membership matrix such that 
the element Q 1ij =  if the feature wi  belongs to structure j, and 
1 N1 l#  is a vector of ones of size .N1 l#  The resulting matrix, 
L Rn

N Np l! #
+  shows the likelihood of each seismic structure for 

each pixel in the image. Then, the pixel-level label for each loca-
tion i in image n corresponds to the seismic structure given by

	 , j(: ) .arg max   y Ln n=
j

u � (13)

Emerging trends and open problems
From the recent advancement in seismic interpretation research 
as we have previously reviewed, we observe two important factors 
that contribute to the success of this endeavor. First, to address the 
challenges rooted in the ever-increasing data size and complexity, 
it becomes very critical to leverage the advanced machine-learn-
ing techniques, especially those based on deep learning. Sec-
ond, being a unique type of visual signals, seismic volumes can 
be interpreted effectively using image analysis algorithms that 
utilize HVS characteristics and models. In this section, we will 
briefly discuss the emerging trends and open problems regarding 
these two aspects.

Deep subsurface learning
Deep learning is one of the most powerful learning techniques 
available today. As a data-driven approach, it utilizes sophisti-
cated neural networks with deep architectures to uncover com-
plex hidden structures and characteristics directly from a large 
amount of samples. When applied to subsurface data, deep 
learning will allow geoscientists to make sense out of the mas-
sive data sets with many variables while avoiding the human 
biases. Naturally, seismic interpretation based on deep learning 
is emerging as a very promising trend. For example, Waldeland 
and Solbergd [69] applied CNNs to classify salt bodies from 
3-D seismic data sets. Huang et al. [70] provided an excellent 
demonstration of the effectiveness of integrating CNNs and 
multiattribute analysis from poststack amplitude in detecting 
faults. An illustration of implementing CNNs for salt-body 
boundary delineation is given in Figure 10. In this case, a good 
match is observed between the detected boundaries and the 
original seismic images. Besides the conventional poststack 
data used for interpretation, geophysicists are turning their 
attention to the prestack data. For example, Hami-Eddine et al. 
[71] investigated a machine-learning approach to optimize the 
use of both prestack and poststack seismic data. Araya-Polo 
et al. [72] and Lin et al. [73] proposed using a deep neural 
network to learn a mapping relationship between the raw seis-
mic data and the subsurface geology so that the labor-intensive 
processing stage could be avoided.

To fully explore the potential of deep learning, there are a few 
open problems that need to be addressed carefully. First, the lack 
of labeled data is a serious obstacle. Unlike natural image clas-
sification problems, public domain data sets with large sets of 
labeled samples are rare for seismic interpretation. This severely 
limits the application of supervised learning techniques. Alterna-
tively, weakly supervised or unsupervised learning will be more 
realistic choices in this case. Other techniques such as genera-
tive adversarial networks (GANs) and active learning, which will 
be discussed shortly, can also provide an alternative approach to 
supervised learning.  

Second, more advanced network architectures need to be 
explored for interpretation. Current works mainly use CNNs 
as the core deep-learning structure. To account for the strong 
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Figure 10. An illustration of implementing CNNs for salt-body boundary 
delineation from the poststack seismic amplitude. The detected boundaries 
are clipped to six vertical sections for quality control. Note the good match 
between the CNN detection and the poststack seismic images
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correlations along different dimensions in a 
seismic volume, networks such as the long 
short-term memory [74] and the neural Tur-
ing machines [75] can be incorporated. 

Third, as a data-driven approach, deep 
learning relies heavily on the provided data. 
Thus, a concern with deep learning is about 
falsely labeled data. Such samples will be 
misleading in the training of the network. To 
tackle this problem, various regularization 
techniques such as dropout can be adopted. 
If applicable, weakly supervised or unsupervised learning should 
be adopted. 

Finally, seismic imaging and processing that precede the inter-
pretation will inevitably introduce errors or uncertainties. How 
do these errors propagate through the learning networks? How 
do they affect the learning performance? Moreover, in general, 
how do we quantify the uncertainty associated with these learn-
ing approaches? These are all issues of practical significance for 
seismic interpretation, and should be carefully addressed.

GANs
Among various deep-learning techniques, generative models are 
a set of models that have been quite popular recently. Generative 
models are systems that can learn and generalize the probabil-
ity distribution of data from training samples. The outcome of 
such systems can be either the explicit probability distribution or 
samples from the learned models. Some models can be designed 
to do both tasks. One specific type of generative model that 
has gained popularity recently is the GAN. GANs are used to 
generate samples that come from the same distribution as some 
given training samples. The task is achieved by designing two 
separate systems that compete against each other. More specifi-
cally, GANs consist of 1) a generator that can transform random 
noise into an image that looks like the training samples, and 2) 
a discriminator that takes an image as input and estimates the 
probability that this image is from the same distribution as that 
of the training samples. After proper training, the generator will 
be able to produce images that resemble images from the train-
ing samples. 

GANs have been employed in various applications such 
as image synthesis, image interpolation and inpainting, style 
transfer, and next-frame prediction [76]–[79]. More details 
about GANs and their useful applications can be found in 
[80]. However, in the context of seismic interpretation, we 
highlight three applications of GANs that are particularly 
useful. The first application is to use GANs to train a model 
with unlabeled or partially labeled data (e.g., [81]). A second 
application is model-based seismic interpolation using GANs 
to interpolate seismic traces or generate new seismic sections 
at superresolution. A third application is to utilize GANs for 
style transfer of seismic data sets, which are very diverse in 
terms of acquisition resolution, reflector strength, and size of 
structures. Due to the diversity of such data sets, an algorithm 
trained on one seismic data set will not necessarily work on 
other data sets. Using GANs, it is possible to transfer the 

style of one data set along with its labels to 
another data set that can be used to improve 
the robustness of the algorithm on a differ-
ent data set. 

Figure 11 shows sample seismic images 
generated by a deep convolutional GAN 
(DCGAN) [78]. The samples are arranged 
such that each column contains images of 
the same class. The network was trained on 
the entire LANDMASS data set [48].

Active learning
In a typical interpretation process, an interpreter works in cycles 
of interpretation-examination to improve the results gradually. 
It is desirable if computational approaches can mimic this inter-
active and iterative process. Among all varieties of machine-
learning techniques, active learning emerges as a perfect fit to 
fulfill this purpose. The inherent interactivity will involve a user 
to assist in making intermediate decisions, guiding the learn-
ing process to follow the correct path. More importantly, active 
learning will also help alleviate the problem of insufficient manu-
ally labeled data, as it adds samples to the set of labeled data dur-
ing each iteration. A typical active learning process starts with a 
limited set of manually labeled data samples. Initial models are 
trained using the limited labeled data and then used to select a 
subset from a much larger set of unlabeled samples. The cho-
sen samples are provided as queries to an interactive annotation 
procedure, where they are labeled by a human annotator (or a 
group of annotators to reduce the chance of a biased decision). 
Carefully designed computer algorithms may also be employed 
to perform the labeling in place of human annotators. Finally, the 
labeled queries are added to the existing labeled data set, with 
which a new iteration of learning can be performed. For active 
learning, the query selection is the key to the whole process and 
the most active area of current research.

(a) (b) (c) (d)

Figure 11. Sample seismic images generated using DCGAN. Each column in 
the figure contains generated images that represent one of the four classes 
of LANDMASS data set, i.e., (a) horizons, (b) faults, (c) cha-
otic horizons, and (d) salt domes. 
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Attention models inspired by the HVS
In addition to machine learning, we believe the 
other important factor that will impact seismic 
interpretation research is the HVS modeling. 
For visual analysis, HVS reduces the amount 
of the sensory data information, also known as 
the task-free visual search, by focusing on the 
perceptually salient segments of visual data that 
conveys the most useful information about the 
scene. For example, as an interpreter traverses through a seismic 
volume or a video, the HVS that is sensitive to structures and 
variations in amplitude and surrounding environment registers 
the relative motion of seismic structures across all three dimen-
sions, not all of which are characterized by strong seismic reflec-
tions or texture contrast. Therefore, computational algorithms 
inspired by HVS can be used to develop attention models that 
can effectively automate the structural interpretation of seismic 
volumes. Among many, one such attention model is defined 
as a saliency model, which attempts to predict the interest-
ing areas in images and videos, typically called salient regions, 
by relying on low-level visual cues. In seismic interpretation, 
visual saliency is important to predict the attention of human 
interpreters and highlight areas of interest in seismic sections, 
which cannot only help in the automation of the interpretation 
process but also develop attention models that can be applied 
to new data sets. Recently, a seismic attribute called SalSi was 
proposed in [21] and [82], which highlights salient areas within 
seismic volumes to assist interpreters in structural interpreta-
tion of salt domes and faults. Furthermore, by incorporating a 
priori information into saliency detection, attention models can 
be used to mimic the behavior of interpreters looking at seismic 
sections. Therefore, saliency detection is one of the promising 
directions that can not only assist interpreters in the interpreta-
tion process but also help develop better attention models for 
seismic interpretation.

It is a challenging task to train a machine to understand 
and reveal various structures of Earth’s subsurface. Yet, once 
achieved, it will be a truly rewarding accomplishment that 
has a large impact on the economy and society. Through its 
fast advancement in the past decade, seismic interpretation 
has already demonstrated its high potential in fulfilling this 
mission. With a broader and deeper collaboration between the 
geophysical and the signal processing communities, we expect 
to witness more breakthroughs in the near future in seismic-
interpretation-enabled subsurface understanding.
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