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ABSTRACT

Recently, there has been significant interest in vari-
ous supervised machine learning techniques that can
help reduce the time and e↵ort consumed by man-
ual interpretation workflows. However, most suc-
cessful supervised machine learning algorithms require
huge amounts of annotated training data. Obtaining
these labels for large seismic volumes is a very time-
consuming and laborious task. We address this prob-
lem by presenting a weakly-supervised approach for
predicting the labels of various seismic structures. By
having an interpreter select a very small number of ex-
emplar images for every class of subsurface structures,
we use a novel similarity-based retrieval technique to
extract thousands of images that contain similar sub-
surface structures from the seismic volume. By assum-
ing that similar images belong to the same class, we
obtain thousands of image-level labels for these im-
ages; we validate this assumption in our results sec-
tion. We then introduce a novel weakly-supervised
algorithm for mapping these rough image-level labels
into more accurate pixel-level labels that localize the
di↵erent subsurface structures within the image. This
approach dramatically simplifies the process of obtain-
ing labeled data for training supervised machine learn-
ing algorithms on seismic interpretation tasks. Using
our method we generate thousands of automatically-
labeled images from the Netherlands O↵shore F3 block
with reasonably accurate pixel-level labels. We be-
lieve this work will allow for more advances in machine
learning-enabled seismic interpretation.
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INTRODUCTION

In recent years, there has been a significant interest in ma-
chine learning-based techniques for various seismic inter-
pretation applications such as salt body delineation, fault
and fracture detection, horizon extraction, and facies clas-
sification (e.g., Coléou et al., 2003; Barnes and Laughlin,
2005; Wang et al., 2015a; Guillen et al., 2015; Zhao et al.,
2015; Wang et al., 2015b; Figueiredo et al., 2015; Qi et al.,
2016; Ramirez et al., 2016; Lin et al., 2017).

Supervised machine learning has proven to be one of
the most successful machine learning paradigms. By defi-
nition, supervised machine learning techniques require la-
bels to perform training. However obtaining labels for
large volumes of seismic data is a very demanding task,
especially when the size of the data is in the tens or hun-
dreds of gigabytes. Furthermore, while the amount of
data is growing continuously, the ability of human experts
to manually label large quantities of data is insu�cient.
Therefore, the time and e↵ort required to manually anno-
tate large amounts of training data can often exceed the
time and e↵ort saved by techniques based on automated
machine learning workflows. This is where, we believe,
similarity-based retrieval and weakly-supervised learning

can play a significant role in overcoming this problem.
Similarity-based retrieval is a widely used technique in

content-based image retrieval (CBIR) applications (Zhou
et al., 2017). It utilizes metrics designed to measure the
similarity of two images, to retrieve visually similar im-
ages from a large database of images. On the other hand,
weakly-supervised learning is a machine learning paradigm
where the model is trained using examples that are only
partially annotated or labeled (Torresani, 2014). Figure
1 explains this further. Assume we would like to train
a simple machine learning model to classify salt bodies.
The model takes an input image similar to the one in the
figure and produces the desired output shown, where red
denotes salt body, and cyan denotes everything else. To
train a fully-supervised model, we would need training la-
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Figure 1: The di↵erence between full supervision and
weak supervision. At the bottom row from left to right:
pixel-level labels, partial labels, bounding box, and an im-
age level label. Red denotes salt body, and cyan indicates
everything else.

bels that are fully annotated. In this case, this means
we need pixel-level labels for all pixels in the training im-
ages. If the interpreter only partially labeled the training
images, or provided a bounding box, or just provided an
image-level label indicating whether the training image
contained a salt body or not, then our trained machine
learning model would be a weakly-supervised one, and our
labels are considered weak labels.

In this work, we show that it is possible to predict thou-
sands of high-quality pixel-level labels for training super-
vised machine learning models for seismic interpretation
with very minimal input from the interpreter. As few as
one or two exemplar images are required for each subsur-
face structure of interest such as faults or salt domes. This
is achieved using an unsupervised similarity-based seismic
image retrieval technique to extract thousands of images
with visually similar subsurface structures. A weakly-
supervised matrix-factorization based technique is then
used to learn the common structures and features between
these images, and then map their image-level labels into
pixel-level labels that can be e↵ectively used to train pow-
erful fully supervised machine learning models.

Preliminary elements of this work were published in (Al-
farraj et al., 2016; Alaudah et al., 2017; Alaudah and Al-
Regib, 2017). To our knowledge, other than this work,
no other work attempts to address this issue in the field
of seismic interpretation. Nevertheless, we overview the
related literature in similarity-based retrieval and weakly-
supervised labeling in the following subsections.

Similarity-Based Retrieval

Image similarity measures are functions that quantify the
similarity between a pair of images. The definition of
image similarity can vary depending on the application.
Generic similarity or distance measures, such as peak signal-

to-noise ratio (PSNR) and Euclidean distance, assume
a pixel-to-pixel correspondence between images. These
measures treat every pixel independently. Structural sim-
ilarity (SSIM) is a similarity measure that improves upon
the pixel-to-pixel metrics by capturing local image struc-
ture using low-level local statistics in the spatial domain
(S-SSIM)(Wang et al., 2004) or the complex wavelet do-
main (CW-SSIM)(Wang and Simoncelli, 2005). These
measures are often used for applications such as image
denoising where the pixel-to-pixel correspondence is jus-
tified. Another class of similarity measures is content-
based similarity measures which quantify the similarity
between the contents of the images without making any
assumptions about the correspondence of the locations on
the content. Such measures are often used for applica-
tions like content-based image retrieval in which the goal
is to find images that contain similar visual content to a
query image. A particular class of content-based similarity
measures is texture-based similarity measures which com-
pare the textured content of images using texture analy-
sis. A well-known example of such measures is the struc-
tural texture similarity measure (STSIM) (Zujovic et al.,
2013) which uses subband statistics and correlations in
a multiscale frequency decomposition, namely, the steer-
able pyramid. Another example of such multiscale decom-
position is the curvelet transform (Candes and Donoho,
2004a). It provides an e�cient way of representing im-
ages with high directional content. Candes and Donoho
(2004a) have shown that images that contain geometri-
cally regular edges are more compactly represented by a
curvelet rather than a wavelet decomposition. This is es-
pecially true for seismic data, where the wavefronts lie
mainly along smooth curves. A few texture-based similar-
ity measures based on curvelet coe�cients have been pro-
posed in the literature for texture and seismic image sim-
ilarity. Al-Marzouqi and AlRegib (2014) proposed a seis-
mic image similarity measure based on adaptive curvelets.
Long et al. (2015) proposed combining the texture similar-
ity metric in (Zujovic et al., 2013) with seismic disconti-
nuity maps to evaluate the similarity of seismic images.
Alaudah and AlRegib (2015) then proposed a method
based on histograms of curvelet coe�cients, while Alfarraj
et al. (2016) proposed a method based on the singular val-
ues of curvelet coe�cients, truncated using the e↵ective
rank (Roy and Vetterli, 2007).

Weakly-Supervised Labeling

The vast majority of the visual data nowadays is un-
labeled or weakly labeled. Lately, there has been con-
siderable interest in weakly-supervised methods for la-
beling natural images. Several weakly-supervised meth-
ods proposed recently are based on matrix factorization
techniques. For example, Hong et al. (2016) proposed a
framework for clustering images retrieved from a reference
dataset using sparse and orthogonal non-negative matrix
factorization. However, this method was proposed for
image clustering and does not apply to pixel-level label-
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ing. Other researchers have considered techniques based
on non-negative matrix factorization to infer the pixel-
level labels of pre-segmented regions (known as superpix-
els) within di↵erent images (Niu et al., 2015; Lu et al.,
2017). Furthermore, Zhang and Gong (2016) proposed a
non-negative matrix co-factorization based approach that
jointly learns a discriminative dictionary and a linear clas-
sifier that classifies features from segmented images into
di↵erent classes. These methods are all applied on fea-

tures extracted from superpixels and not the actual pixels
in the image. This considerably limits the resolution of the
resulting labels. Furthermore, most of these approaches
assume or require that the image is segmented into seman-
tic regions that represent di↵erent classes. This is not the
case in our work.

More recently, driven by the success of convolutional
neural networks (CNNs) in various computer vision tasks,
many researchers have proposed weakly-supervised label-
ing methods based on CNNs (Papandreou et al., 2015;
Pinheiro and Collobert, 2015; Hong et al., 2015; Zhang
et al., 2015; Pathak et al., 2015; Hou et al., 2016; Kim and
Hwang, 2016; Wei et al., 2017; Kim et al., 2017). These
methods, however, require a significant amount of train-
ing data to be e↵ective, and usually do not localize various
objects accurately without requiring other post-processing
steps. Our proposed approach, based on non-negative ma-
trix factorization, does not require any training or post-
processing. In fact, very few exemplar images per class are
required for our approach to give satisfactory results. As
few as one or two exemplars per class can be su�cient to
obtain a large number of image-level labeled data using
similarity-based retrieval. These image-level labels that
we obtain are then directly mapped into pixel-level labels
without using any segmentation or any feature extraction
technique.

In summary, our main contributions in this work are as
follows:

• We introduce a similarity-based image retrieval frame-
work to extract large numbers of images from a 3D
seismic volume with similar subsurface structures to
exemplar images chosen by an interpreter.

• We propose a weakly-supervised algorithm, based on
non-negative matrix factorization, to learn a map-
ping from image-level labels into pixel-level labels.

• We apply this approach to images extracted from the
Netherlands O↵shore F3 block and generate thou-
sands of pixel-level labeled images for three classes
of subsurface structures: chaotic layers, faults, and
salt domes.

The rest of the paper is organized as follows: first, we
introduce the proposed approach including the similarity-
based retrieval and the weakly-supervised label mapping.
Then, we show various results that illustrate the e↵ec-
tiveness of our similarity-based retrieval method, as well
as the weakly-supervised label mapping. We then discuss

these results and how our method can be improved, and
finally, conclude the paper.

PROPOSED METHOD

Overall Workflow

The overall workflow of the proposed method is shown
in Figure 2. First, the interpreter hand-selects a few im-
ages Xe “ rx1,x2, ¨ ¨ ¨ ,xNes such as those in Figure 3,
to exemplify each class of subsurface structures. These
can be as few as one image per class if the visual fea-
tures of that class are uncomplicated. A similarity-based
retrieval method is then used to extract a very large num-
ber of images that contain similar subsurface structures.
We assume that most-similar images to the exemplar be-
long to the same class as that of the exemplar image. We
validate this assumption later in the results section. At
this stage, all these images have image-level labels. A
weakly-supervised mapping, based on non-negative ma-
trix factorization, is then used to map these image-level
labels into pixels to obtain the final results. A high-level
workflow of the proposed approach is depicted in Figure 2.
The remaining parts of this section explain the similarity-
based retrieval and the weakly-supervised label mapping
modules in detail.

Similarity-Based Retrieval

Image similarity measures are used to evaluate the sim-
ilarity of the visual content between two images. They
take two images as input and return a value, often in the
range r0, 1s, that indicates the level of similarity between
the two images. A higher value indicates higher similarity.
These measures are often used to search for images within
large visual datasets. Here, we present the similarity mea-
sures we use to capture the similarity of seismic images
(Alfarraj et al., 2016) and then describe how this metric
is used to retrieve images that contain similar subsurface
structures. This similarity measure works by computing
the similarity between two vectors containing the singular
values of the curvelet decomposition of the two images,
trimmed adaptively using e↵ective rank approximation.
We will explain this in detail in the following subsections.

The Curvelet Transform

The curvelet transform is a directional multiscale decom-
position first introduced by Candes et al.(Candes and Donoho,
2004b; Candes et al., 2005). It provides an e�cient way of
representing images with high directional content. Can-
des and Donoho (2004a) have shown that the curvelet
transform provides an optimally sparse representation for
curve-like structures, such as seismic reflectors, when com-
pared to wavelets.

The curvelet transform works by taking the 2D fast
Fourier transform of an image (2D FFT) and then di-
viding the plane into multiple scales and orientations as
is shown in Figure 4(a). The total number of scales in the
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Figure 2: General workflow of the proposed method. Colored image boundaries indicate the image-level labels. Blue,
cyan, green, and red denote the chaotic, other, faults, and salt dome classes respectively.

curvelet tiling, J , depends on the size on the image, and
is given by

J “ rlog2 minpN1, N2q ´ 3s, (1)

where N1 and N2 are the number of pixels in vertical and
horizontal directions, respectively; and r¨s is the ceiling
function. The number of orientations at scale j • 1, Kpjq,
is given by:

Kpjq “ 16 ˆ 2rpj´1q{2s. (2)

For scale j “ 0, there is only one orientation. Curvelet
coe�cients are then generated by taking the inverse FFT
for each wedge (such as the one highlighted in Figure 4)
after multiplying it by a smooth band pass filter. Since the
FFT of real images is symmetric around the origin, only
two consecutive quadrants of the Fourier spectrum are
necessary for obtaining the curvelet coe�cients. Figure
4 shows the spatial and frequency representations of a
curvelet wedge.

Feature Extraction and Similarity Measurement

To compute the similarity between two images, we first
compute feature vectors for each image and then we ar-
rive at the similarity value by comparing the correspond-
ing feature vectors of two images. The feature vector of a
given image is a collection of all e↵ective singular values
for all scales and orientations of the curvelet coe�cients
of an image. The overall workflow for computing the sim-
ilarity is depicted in Figure 5.

To obtain a feature vector for a grayscale image, xi,
we first apply the curvelet transform, and compute its
coe�cients for all scales, j “ t1, 2, . . . , Ju, and orienta-
tions, k “ t1, 2, . . . , Kpjqu. Then, the singular values
of these curvelet coe�cients are calculated as �rj,ks “
r�1, . . . , �LsT where �1 • �2 . . . • �L and L is the smallest
dimension of the coe�cients matrix.

Ideally, if the rank of a matrix is r, only the first r
singular values are non-zero. However, when we consider
the singular value decomposition (SVD) on images that
are subject to di↵erent types of noise, the number of non-
zero singular values is greater than r. In most cases, none
of the singular values are exactly zero; even for a rank-
deficient matrix. Roy and Vetterli (2007) proposed the
e↵ective rank as a method to estimate the actual rank of
a matrix by estimating its e↵ective dimensionality. To cal-
culate the e↵ective rank, we first compute the normalized
singular values as

pi “ �i

}�rj,ks}1
for i “ 1, . . . , L, (3)

where } ¨ }1 is the `1 norm. Then, the e↵ective rank is
calculated as a function of the entropy of the singular
value distribution defined in equation 3, that is

E↵ectiveRank “ exp

˜
´

Lÿ

i“1

pi log pi

¸
, (4)

resulting in a real number less than or equal to L with
equality if and only if all singular values are equal.

For each set of curvelet coe�cients, the E↵ectiveRank, is
calculated as in equation 4. A new vector of e↵ective sin-
gular values is formed by keeping the first tE↵ectiveRanku
singular values, where t¨u denotes the floor function. The
remaining singular values are set to 0. In other words,
for scale j and orientation k, we form the vector �̂rj,ks “
r�1, . . . , �tE↵ectiveRanku, 0, . . . , 0s. The overall feature vector
of image xi is then obtained by concatenating all �̂rj,ks
for all scales and half the number of orientations,

vi “ r�̂r1,1s, �̂r2,1s, . . . , �̂r2,Kp2q{2s, �̂r3,1s . . . , �̂rJ,1ss. (5)

The similarity between two images, x1 and x2, is then
computed as

Similaritypx1,x2q “ 1 ´ }v1 ´ v2}1

}v1 ` v2}1
. (6)

Where, v1 and v2 are the feature vectors corresponding
to x1 and x2. Since the singular values are non-negative
by definition, the resulting similarity value is in the range
r0, 1s with a value closer to 1 indicating higher similarity.

Similarity-Based Retrieval

By ranking the retrieved images based on their similar-
ity to a reference image, we can extract thousands of
images that resemble exemplar images chosen by an in-
terpreter. In our work, we extract thousands of images
extracted from random locations within the Netherlands
O↵shore F3 block (dGB Earth Sciences, 1987). We then
use similarity-based retrieval to retrieve the top M images
that are most similar to the exemplar images shown in 3.
The value of M is selected by the interpreter such that the
M retrieved images can be reasonably assumed to belong
to the same class as the reference exemplar image. Later
in the results section, we show that our approach is robust
to wrongly-retrieved images.
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(a) chaotic (b) faults

(c) other 1 (d) other 2

(e) salt dome 1 (f) salt dome 2

Figure 3: The exemplar images of each class of subsurface
structures that were used to retrieve the images in this
work. One exemplar image was used for chaotic and
fault, and two exemplars were used for other and salt

dome. These images are of size 99 ˆ 99 pixels and were
obtained from the Netherlands O↵shore F3 Block (dGB
Earth Sciences, 1987).

Weakly-Supervised Label Mapping

Once we have obtained image-level labels, we use a weakly-
supervised learning approach, based on non-negative ma-
trix factorization, to map these image-level labels into
pixel-level labels. This mapping is a weakly supervised
one since every image xi P Rnˆm

` has only one label as
opposed to n ˆ m labels (i.e., one label per pixel). In the
remainder of this section, we will describe this weakly-
supervised label mapping in detail.

Given the image-level labeled images, tx1,x2, ¨ ¨ ¨ ,xNsu,
we vectorize them to construct the data matrix X P RNpˆNs

`
such that each image is a column in X, where Np “ nˆm
is the number of pixels in each image, and Ns is the total
number of images.

Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) (Paatero and
Tapper, 1994; Lee and Seung, 1999) is a commonly used
matrix factorization technique that is closely related to
many unsupervised machine learning techniques such as

-250 -200 -150 -100 -50 0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

100

150

200

250

Figure 2: The figure illustrates the basic digital tiling. The windows Ũj,� smoothly localize the
Fourier transform near the sheared wedges obeying the parabolic scaling. The shaded region rep-
resents one such typical wedge.

By construction, Vj(S��
�) = V (2�j/2��2/�1 � `) and for each � = (�1, �2) with �1 > 0, say, (2.2)

gives
��

�=��
|Vj(S��

�)|2 = 1.

Because of the support constraint on the function V , the above sum restricted to the angles of
interest, �1 � tan �� < 1, obeys

�
all angles |Vj(S��

�)|2 = 1, for �2/�1 � [�1 + 2��j/2�, 1 � 2��j/2�].
Therefore, it follows from (3.2) that

�

all scales

�

all angles

|Ũj,�(�)|2 = 1. (3.5)

There is a way to define “corner” windows specially adapted to junctions over the four quadrants
(east, south, west, north) so that (3.5) holds for every � � R2. We postpone this technical issue to
Section 7.2.

The pseudopolar tiling of the frequency plane with trapezoids, in Figure 2, is already well-established
as a data-friendly alternative to the ideal polar tiling. It was perhaps first introduced in two articles
that appeared as book chapters in the same book, Beyond Wavelets, Academic Press, 2003. The
first construction is that of contourlets [15] and is based on a cascade of properly sheared direc-
tional filters. On the other hand, ridgelet packets [24] are defined directly in the frequency plane
via interpolation onto a pseudopolar grid aligned with the trapezoids.

In the next two sections we explain in parallel the two versions of the transform, namely via
USFFT and via Wrapping. In a nutshell, the two implementations di↵er in the way curvelets at
a given scale and angle are translated with respect to each other. In the USFFT-based version
the translation grid is tilted to be aligned with the orientation of the curvelet, yielding the most
faithful discretization of the continuous definition. In the Wrapping version the grid is the same for

10

(a) Frequency viewpoint

(b) Spatial viewpoint

Figure 4: Frequency and spatial viewpoints of a curvelet
wedge. Adapted from Candes et al. (2005). Copyright
c�2006 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.

k-means and spectral clustering (Türkmen, 2015; Ding
et al., 2005). NMF decomposes a non-negative matrix
X P RNpˆNs

` into the product of two lower-rank matrices

W P RNpˆNf

` , and H P RNf ˆNs

` such that both W and H
are non-negative, and Nf † minpNp, Nsq. In other words
we have,

X « WH. (7)

In our work, the matrix X represents a data matrix where
each column is a single image in vector form. The data
matrix X has Ns such images, each of which is a vector
of length Np. Here, we use Np, Ns, and Nf to denote the
number of pixels, the number of samples, and the number
of features (or the rank of X) respectively. NMF factor-
izes the data matrix X into two non-negative matrices, a
basis matrix W and a coe�cient matrix H. In clustering
terms, the columns of W represent Nf number of clusters
in the data, whereas the columns of H represent the mem-
berships of each of the images to the di↵erent clusters in
the data. Here, the clusters can represent di↵erent seismic
structures like salt domes, faults, or horizons.

The regular NMF problem does not have a closed-form
solution, and is typically solved by minimizing the follow-
ing objective function

arg min
W,H

||X ´ WH||2F s.t.W • 0 and H • 0, (8)

where, || ¨ ||F is the Frobenius norm, and • is an element-
wise inequality. Lee and Seung (2001) proposed an e�-
cient method of solving this problem using multiplicative
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Figure 5: Workflow of the similarity measure proposed in Alfarraj et al. (2016).

update rules, and proved that they converge to a local
minima.

Sparsity and Orthogonality Constraints

Lee and Seung (1999) showed that NMF can be used to
learn a parts-based representation of the data, where each
feature would represent a localized “part” of the data. In
practice, this is rarely achieved using the formulation in
equation 8. To remedy this, we initialize the feature ma-
trix W0 using k-means separately on the di↵erent classes
in the data matrix X. This ensures that each feature wi

in the matrix W corresponds to a single class. We then
impose a sparsity constraint on these initial features such
that the sparsity of every feature wi in matrix W0 satis-
fies

⇢pwiq “
a

Np ´ ||wi||1
||wi||2a

Np ´ 1
, (9)

where ⇢p¨q indicates the sparsity of a vector. This value
is always between zero and one, with higher values indi-
cating higher sparsity. To enforce this sparsity constraint,
we follow the algorithm proposed by Hoyer (2004). Ad-
ditionally, we would expect that our features in W only
represent a few images. In other words, it is unlikely that
the same feature will be present in a large number of the
images across di↵erent classes. To enforce this expecta-
tion, we impose an orthogonality constraint on the coef-
ficients matrix H. We also add two regularization terms
on W and H. The problem then becomes

arg min
W,H

||X ´ WH||2F ` �||HHT ´ I||2F ` �1||W||2F
`�2||H||2F s.t. W • 0,H • 0 and ⇢pwiq “ ⇢w,

(10)
where matrix I P RNf ˆNf

` is an identity matrix. The
values �, �1, and �2 are regularization constants, and ⇢w

is the desired sparsity level.

Multiplicative Update Rules

Instead of solving the problem in equation 10 for both
W and H, we decouple this problem into two separate
sub-problems. The first,

arg min
W

||X´WH||2F `�1||W||2F s.t.W • 0, ⇢pwiq “ ⇢w,

(11)

is solved for W while H is held constant. Then the second,

arg min
H

||X´WH||2F `�||HHT ´I||2F `�2||H||2F s.t.H • 0,

(12)
is solved for H while W is held constant. We use gradient
descent to derive the following multiplicative update rules
for W:

Wt`1 “ Wt d pXHtT qij

pWtHtHtT ` �1Wtqij

, (13)

and for H:

Ht`1 “
Ht d

`
Wt`1T

X ` �Ht
˘
ij

pWt`1T Wt`1Ht ` �2Ht ` �HtHtT Htqij

.

(14)
Here, d represents element-wise multiplication, and the
superscript indicates the iteration number. These mul-
tiplicative update rules (MURs) are applied successively
until both W and H converge. As we show in Appendix B,
these multiplicative update rules are a special case of gra-
dient descent with an automatic step size selection. One
advantage of using these MURs is the guaranteed non-
negativity of W and H when they are initialized with
non-negative values. A detailed derivation of these MURs
is shown in Appendix B.

Extracting the Labels

Once W and H have converged, each column of H, hn,
indicates the features used to construct the nth image.
Since every feature in W should correspond to a single
class, we can predict the label of each pixel in the image by
knowing which features are used to represent it. In other
words, we can map the coe�cients in hn to the seismic
structures that make up the image. Thus for image xn we
can obtain

Ln “ WpQ d phn1T qq @n “ r1, ¨ ¨ ¨ , Nss, (15)

where 1 is a column vector of ones of length Nl, and
Q P t0, 1uNf ˆNl is a cluster membership matrix such that
the element Qpi, jq “ 1 if the feature wi belongs to struc-
ture j. The matrix Q is used to encode our knowledge
of the image-level labels, and how the matrix W was ini-
tialized. The resulting matrix, Ln P RNpˆNl

` shows the
likelihood of each seismic structure for each pixel in the
image. Then, the pixel-level labels for image xn corre-
spond to the seismic structure given by
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ynpiq “ arg max
j

Lnpi, jq @i “ r1, ¨ ¨ ¨ , Nps, (16)

where Lnpi, jq denotes the element in the ith row and jth

column of matrix Ln. However, due to the nature of the
weakly-supervised mapping of the labels, there is an ele-
ment of uncertainty in the mapping. Since the features
wi are sparse, some pixels in an image xn may not have
a feature that accurately represents all the pixels within
it. These pixels typically end up being represented as a
weighted sum of a large number of di↵erent features, often
from di↵erent classes and having small coe�cients. This
leads to noisy labeling results. To remedy this, we in-
troduce a new uncertain class that contains pixels with
uncertain labels. We define our confidence, cn P RNp , in
the predicted label of every pixel in the image xn as

cnpiq “ max
j

Lnpi, jq @i “ r1, ¨ ¨ ¨ , Nps. (17)

We can then assign any pixel whose confidence is less than
a threshold ⌧ to the uncertain class, denoted as class 0

ynpc†⌧q “ 0. (18)

Once we obtain the pixel-level labels y for each image, we
apply a 3 ˆ 3 median filter to clear any noisy labels and
get the final labeling result for that image. We do this
for all Ns images and concatenate the results to construct
the pixel-level labels matrix Y P ZNpˆNs that contains
the final pixel-level labels for all the images in the data
matrix

Y “ ry1,y2, ¨ ¨ ¨ ,yNss. (19)

RESULTS

We present our results in two subsections corresponding
to the two main modules of our workflow shown in Figure
2. First, we show results that demonstrate the e↵ective-
ness of our similarity measure and validate our assumption
that all retrieved images should have the same image-level
label as the query image. Then we show sample results of
the weakly-supervised label mapping and demonstrate its
e↵ectiveness in accurately localizing the various seismic
structures we have used in this study.

Similarity-Based Retrieval

To evaluate the performance of our similarity measure
compared to other measures, we devise two experiments.
Namely, retrieval and clustering. We do both experi-
ments directly on the similarity matrices of the various
measures. These matrices contain the similarity values
between all pairs of images in a dataset for a specific mea-
sure. For example, for a dataset that contains Ns images
divided into Nl classes, the size of the similarity matrix S
is Ns ˆ Ns, where Spi, jq is the similarity between xi and
xj , i.e. Spi, jq “ Similaritypxi,xjq. The ith row of S rep-
resents the similarity values of all images in the dataset

compared to xi. Note that in these experiments we con-
vert distance metrics, such as Euclidean distance and the
method proposed by Alaudah and AlRegib (2015), to sim-
ilarity measures by normalizing each row of S by the max-
imum value of that row and subtracting it from 1. Hence,
the diagonal entries of S are all 1.

Throughout the similarity-based retrieval experiments,
we use the LANDMASS-2 dataset⇤ (Center for Energy
and Geo Processing, 2015) which is comprised of 4000 im-
ages of size 99ˆ99 pixels, with their values normalized to
be between 0 and 1. These images were extracted from the
Netherlands O↵shore F3 block and divided equally into
four classes according to their dominant structure. The
classes are horizon, chaotic, fault and salt dome. In
the following subsections, we will discuss the two experi-
ments and their results in detail.

In our experiments, we compare the performance of the
method we described (Alfarraj et al., 2016) to di↵erent
similarity and distance measures. The following measures
were used in the experiments:

1. Euclidean distance
2. CW-SSIM with default parameters (Wang and Si-

moncelli, 2005)
3. STSIM-1 and STSIM-2 with 4 scales and 8 orienta-

tions (Zujovic et al., 2013)
4. SeiSIM with 4 scales and 8 orientations (Long et al.,

2015)
5. Curvelet-based distance measure (Alaudah and Al-

Regib, 2015)
Figure 6 shows the receiver operating characteristic (ROC)

curves of the similarity measures listed above. The re-
trieval results are summarized in Table 1. The metrics
used to evaluate the performance of di↵erent methods are
detailed in Appendix A. The results show that the sim-
ilarity measure proposed in (Alfarraj et al., 2016) is the
best performing in all the di↵erent metrics we used.

To further analyze the retrieval results, we show in Fig-
ure 7 the Precision @M curves for each of the four classes
in the dataset using the best performing similarity mea-
sure, in addition to Precision @M for the entire dataset.
The cyan curve represents the horizon class, and it shows
that the precision is 1 for all values of M . This is mainly
due to the simplicity of structures that appear in horizon

images. On the other hand, the curves of the other classes
drop at di↵erent rates depending on the complexity of
their structures. For example, images of fault class have
a di↵erent number of faults of di↵erent scales and dipping
angles, which makes them the most complicated class in
the dataset. Hence, the fault precision curve drops at a
faster rate than those of other classes. We show the curve
for the combined images of all classes in black.

To further assess the performance of the similarity mea-
sures listed above on seismic data, we set up a cluster-
ing experiment using the similarity matrix obtained pre-
viously. First, the images in the dataset are projected
into a 2-dimensional Euclidean subspace based on their

⇤https://ghassanalregib.com/landmass/

http://cegp.ece.gatech.edu/codedata/landmass/


Structure Label Prediction 9

Table 1: Performance of di↵erent similarity metrics for similarity-based retrieval and clustering

Retrieval Clustering
Metric RA MAP AUC Rand Index
Euclidean distance 0.3450 0.3944 0.5145 0.3943
CW-SSIM(Wang et al., 2004) 0.7211 0.8062 0.8584 0.8697
STSIM-1(Zujovic et al., 2013) 0.8668 0.9255 0.9655 0.8954
STSIM-2(Zujovic et al., 2013) 0.8548 0.9104 0.9637 0.8772
SeiSIM(Long et al., 2015) 0.8192 0.8860 0.9450 0.8883
Alaudah and AlRegib (2015) 0.8962 0.9494 0.9776 0.9048
Alfarraj et al. (2016) 0.9105 0.9537 0.9830 0.9702
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Figure 6: Receiver Operating Characteristics (ROC)
curves for the various measures used in the retrieval ex-
periments.

similarity, such that the distance between images in the
projection subspace is inversely proportional to their sim-
ilarity values. The projection is done using classical mul-
tidimensional scaling (MDS) (Borg and Groenen, 2005).
Then, the projected data points are clustered into four
clusters using the k-means algorithm.

Since clustering is an unsupervised method, the clus-
tering algorithm clusters the images according to their
measured similarity. Therefore, the clusters do not neces-
sarily correspond to classes; unless the similarity measure
has a good discriminative power. Therefore, one can use
the clustering results to quantify the goodness of the sim-
ilarity measure. To evaluate the clustering performance,
we compute the rand index (explained in Appendix A)
which is a measure of the similarity between two data
clusterings. We report the rand index results for di↵erent
similarity measures in Table 1. The results of the cluster-
ing experiment further validate our conclusion from the
retrieval experiment that our method is superior to other
methods in the literature.

Also, we show the two-dimensional projection of the
data using our method in Figure 8. The figure shows that
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Figure 7: Precision at M curves for di↵erent classes of
images shown for varying number of retrieved images.

using the similarity values to project the dataset into a
lower dimensional subspace produces clusters that are al-
most linearly separable. Horizon and salt dome classes
are separated well from all other classes. However, the
fault and chaotic classes slightly overlap. It is impor-
tant to mention that this is only a 2D projection of the
data and that the data is more easily separated in a higher-
dimensional space. These results suggest that the simi-
larity measure can be used to discriminate the di↵erent
classes of seismic images with high accuracy.

Weakly-Supervised Label Mapping

We apply our similarity measure on the Netherlands O↵-
shore F3 block (dGB Earth Sciences, 1987) to retrieve
M “ 500 images for each of the four classes, chaotic,
other, fault, and salt dome. We put these images in
vector form and use them to construct matrix X. We
then apply the k-means clustering algorithm on each class
separately and use the results to initialize matrix W0 af-
ter we impose the sparsity constraint in equation 9. The
coe�cients matrix H0 is initialized with uniform random
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Figure 8: A two dimensional projection of the di↵erent
images in the LANDMASS-2 dataset using multidimen-
sional scaling with the similarity measure we proposed in
(Alfarraj et al., 2016).

numbers in the range r0, 1s. We empirically select the val-
ues of �1, �2 and � as 0.1, 0.5, and 5 respectively. The
sparsity of the initial features ⇢w is set to 0.4. Addition-
ally, the confidence threshold ⌧ is set to 0.001.

Since our similarity-based retrieval workflow might pro-
duce a few images that do not belong to the same class as
the reference image, we might end up with a few wrong
image-level labels. However, the k-means initialization
step of W0 greatly enhances the robustness of our label
mapping algorithm to mislabeled images. To validate this
claim, we examine the e↵ect of wrongly retrieved images
on the final pixel-level labels and analyze the robustness
of our label mapping algorithm. We achieve this by artifi-
cially replacing images in X with wrongly-labeled images,
and then computing the final pixel-level labels and com-
paring the performance of our label mapping algorithm
relative to the base case where no images are replaced.
The performance is evaluated using a metric called pixel

accuracy that measures the percentage of all pixels that
are correctly classified. Pixels with low confidence in the
base case are ignored. Fig. 9 shows the drop in relative
performance as the percentage of wrongly-labeled images
in X increases for varying numbers of feature clusters per
class, k. Fig. 10 shows a similar drop for di↵erent values
of the feature sparsity ⇢w. Overall, the larger the number
of clusters, and the higher the sparsity of the initial fea-
tures, the more robust the label mapping algorithm is to
wronlgy retreived images.

We then apply the MURs in equations 13 and 14 suc-
cessively until both W and H converge. Figure 11 shows
the convergence curves for the W objective function in
equation 11, the H objective function in equation 12, and
the overall objective function defined in equation 10. We
see that although we did not attempt to solve equation 10
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Figure 9: The robustness of our label mapping algorithm
to mislabeled images for various numbers of feature clus-
ters per class, k.
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Figure 10: The robustness of our label mapping algorithm
to mislabeled images for various feature sparsity levels,
⇢w.

directly, the two MURs in equations 13 and 14 e↵ectively
minimize the overall objective function. We terminate our
optimization at the 200th iteration. Performed on a GPU,
this process takes around 4 seconds.

Figure 12 shows the initial labels for four di↵erent im-
ages from the four di↵erent classes, as well as the labels
for various iterations in the optimization process. We
note that since the coe�cient matrix H was initialized
with random values in the range r0, 1s, our “initial” confi-
dence computed using equation 17 is very high, and conse-
quently, very few pixels in the initial labels had coe�cient
smaller than ⌧ and therefore belonged to the uncertain

class). However, immediately after we start applying the
MURs the confidence value of the labels drastically drops,
to the degree that all the pixels in images during the first
iteration are labeled as uncertain. However, as the opti-
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Figure 11: A plot showing the convergence curves for the
multiplicative update rules for W and H as well as the
overall objective function in equation 10.

mization progresses, confidence in various predicted labels
gradually increases. Towards the end of the optimization,
the orthogonality term in equation 10 plays a more promi-
nent role in ensuring that most features in W represent
only a few images in X, this significantly reduces the num-
ber of noisy labels.

Figure 13 displays several examples selected at random
from the final results that we obtain for various classes of
subsurface structures. These results are shown for the
baseline case using NMF only, the case where we use
sparse initial features in W0, and our proposed formu-
lation. We observe that the NMF results are very noisy.
The results with sparse initial features are better, but they
contain bands of misclassified pixels, typically in the cen-
ter of the image. However, the results of our proposed
formulation are far better at localizing the di↵erent sub-
surface structures, and they do not exhibit the same mis-
classified bands. Our results show a very good match be-
tween the labeled subsurface structures and the structures
in the original seismic image. Furthermore, it is important
to note that this method is not limited to these particular
classes of subsurface structures and can be easily applied
to any other structure as long as a su�cient number of
similar images are retrieved for each class.

Finally, as with any other workflow, there are several ar-
eas where this approach can be improved. First, di↵erent
classes of subsurface structures can often have di↵erent
scales, whereas the method we have currently proposed
uses a fixed size image for every class. It is worth in-
vestigating methods to alleviate this issue. Also, the fi-
nal pixel-level labels are sensitive to the initial features,
W0. While we have showed that k-means can easily be
used to initialize W0, it is worth investigating other more
promising methods such as convolutional neural networks.
In addition, if the data matrix X has a wrong sparsity

structure, applying the sparsity constraint in equation 9
to form the feature matrix W might not lead to represen-
tative features of the di↵erent classes in X. In that case,
other techniques should be used to initialize W. Finally,
there are a few parameters such as the sparsity level ⇢w,
the number of retrieved images per class M , and the regu-
larization constants that need to be set by the interpreter
based on her empirical assessment of the results.

CONCLUSION

In conclusion, we have proposed a method for predict-
ing the labels of various seismic structures to enable the
use of fully-supervised machine learning techniques for
seismic interpretation. Our method uses a few exemplar
images that are assigned image-level labels by an inter-
preter. Thousands of visually similar images that contain
the same structures are then automatically retrieved. Fur-
thermore, our weakly-supervised label mapping algorithm
learns the joint structures in all these retrieved images and
maps their image-level labels into pixel-level labels that
are more suitable for fully supervised machine learning ap-
plications. We applied our method to data extracted from
the Netherlands O↵shore F3 block. Our results show that
this approach accurately labels the locations of subsurface
structures such as faults, chaotic horizons, and salt dome
boundaries using at most two exemplar images for each
class.

This approach can also be used to predict labels for
facies classification and similar problems within seismic
interpretation. We believe this approach can significantly
reduce the time and e↵ort needed to obtain quality labeled
data for training supervised machine learning models for
seismic interpretation tasks. We consider that this work,
and others in the future, will help open the way for more
machine learning advances in seismic interpretation, and
structural interpretation in particular.
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APPENDIX A

PERFORMANCE EVALUATION METRICS

We use several metrics to evaluate the performance of our
method in the retrieval and clustering experiments men-
tioned in the results section. Here, we will explain these
metrics in detail.

Retrieval Evaluation Metrics

To assess the retrieval performance of our method com-
pared to other methods in the literature, we set each image
xi in the dataset as a query and retrieve the top images
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Figure 12: Results of our weakly supervised label mapping approach for sample images from each class for various
iterations. The initial labels (i.e. with randomly initialized coe�cients) are also shown in the first column.

in terms of their similarity values. The performance of
a similarity measure is quantified using information re-
trieval metrics. In order to present these metrics, let us
first define the following sets:

• Rpjq
i “

!
rp1q

i , rp2q
i , . . . , rpjq

i

)
is the set of the first j re-

trieved images for xi. Note that the elements of Rpjq
i

are sorted according to their similarity to xi such

that Similarity
´
xi, r

pkq
i

¯
• Similarity

´
xi, r

pk`1q
i

¯
.

• Ci is the set of all images that are of the same class
as xi; excluding the image itself.

• Rpjq
i X Ci is the intersection set of Rpjq

i and Ci. It
contains images that are of the same class as the
query image xi in the set of retrieved images Rpjq

i .

Next, we define information retrieval metrics that were
used to assess the performance of the similarity measures.

• Precision at M (P@M) is the average percentage
of the correctly retrieved images when M images are
retrieved. Formally,

P@M “ 1

Ns

Nsÿ

i“1

���Rpnq
i X Ci

���
���Rpnq

i

���
, (A-1)

where | ¨ | is the number of elements in the set.

• Retrieval Accuracy (RA) is the P@n when n is
equal to the number of elements that are of the same
class the query images, i.e. n “ |Ci|.

RA “ 1

Ns

Nsÿ

i“1

���Rp|Ci|q
i X Ci

���
���Rp|Ci|q

i

���
. (A-2)

• Average Precision (AP) for query image xi is
a measure of precision that takes into account the
order of which the correct images are retrieved. It is
defined as:

APi “ 1

|Ci|

Ns´1ÿ

j“1

���Rpjq
i X Ci

���
���Rpjq

i

���
ˆ 1trpjq

i P Ciu, (A-3)

where 1trpjq
i P Ciu is the indicator function and it is

equal to 1 if and only if rpjq
i P Ci, and 0 otherwise.

Mean Average Precision (MAP) is the mean
value of AP for all images in the dataset.

• Receiver Operating Characteristics (ROC) is
a plot of the True Positive Rate (TPR) versus False
Positive Rate (FPR) for di↵erent similarity thresh-
olds. TPR is the percentage of pairs of images that
are correctly identified as similar by the similarity
measure. FPR is the percentage of pairs of images
that are not similar but were identified as similar
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Figure 13: A small sample of the final results of the weakly-supervised label mapping algorithm using NMF (top),
NMF with sparse features in W0 (middle), and our proposed formulation (bottom). The first two columns show images
containing chaotic structures, and the corresponding chaotic pixel-level labels generated by our method in blue. The
middle two columns show images that contain fault structures, and fault pixel-level labels generated by our method in
green. The last two columns show images that contain salt dome boundaries, and salt dome pixel-level labels generated
by our method in red. Cyan corresponds to the other class.
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by the similarity measure. The area under the ROC
curve, denoted as AUC, is used as a measure of the
discriminative power of a similarity measure. The
ideal ROC curve would have perfect TPR (TPR=1)
for all values of FPR, and in this case, the area under
the curve would be maximum AUC = 1.

Clustering Evaluation Metric

We use the rand index to evaluate our performance in
the clustering experiments. The rand index is defined as
follows. For each pair of images, xi and xj , in the dataset,
we compare the results obtained by k-means clustering
with the ground truth which are the image labels. Then
we count the number of correctly clustered pairs. A pair
is said to be correctly clustered if:

• xi and xj are of the same class and are in the same
cluster in the similarity-based clustering.

• xi and xj are of di↵erent classes and are in di↵erent
clusters in the similarity-based clustering.

If pcorrect is the total number of correctly clustered pairs
and ptotal “

`
Ns

2

˘
is the total number of possible pairs in

the dataset, The Rand Index is defined as the ratio of the
two numbers,

Rand Index “ pcorrect

pall
“ 2pcorrect

NspNs ´ 1q . (A-4)

All of the metrics defined above are in the range r0, 1s
with 1 being a perfect score.

APPENDIX B

DERIVATION OF THE MULTIPLICATIVE
UPDATE RULES

We would like to derive the multiplicative update rules
shown in equations 13 and 14. These multiplicative up-
date rules solve the optimization problems introduced in
equations 11 and 12. We adopt an approach similar to
that proposed by Lee and Seung (2001). Namely, we will
derive the gradient descent updates to solve the problem
for W and H separately. Then, we solve the problem
in equation 10 by alternately updating W and H suc-
cessively until they converge. We will derive the mul-
tiplicative update rules using the objective functions in
equations 11 and 12. For the sake of the simplicity of the
derivation, we drop all the constraints in equations 11 and
12, and later show that the derived multiplicative update
rules for the non-constrained problem also solve the con-
strained optimization problem under the conditions that
we have. Additionally, we have shown in Figure 11 that
solving these two problems iteratively also solves the prob-
lem in equation 10. Therefore, for matrix W we have

arg min
W

||X ´ WH||2F ` �1||W||2F , (B-1)

and for H, we have

arg min
H

||X ´ WH||2F ` �||HHT ´ I||2F ` �2||H||2F . (B-2)

We derive the multiplicative update rules for W and H
respectively in the following two subsections.

Multiplicative Update Rule for W

If we denote the objective function defined in B-1 as FW,
we can rewrite FW as

FW “ Tr
`
pX´WHqT pX´WHq

˘
`�1TrpWT Wq, (B-3)

where Trp¨q denotes the trace of a matrix. Simplifying
the expression further, and employing the property that
TrpA ` Bq “ TrpAq ` TrpBq, we obtain

FW “ TrpXT Xq ´ TrpXT WHq ´ TrpHT WT Xq
` TrpHT WT WHq ` �1TrpWT Wq. (B-4)

Taking the partial derivative of FW with respect to W
we get

BFW

BW “ ´2pXHT q ` 2pWHHT q ` 2�1W

9 ´ XHT ` WHHT ` �1W
(B-5)

The gradient descent update for W will then be a step in
the direction of the negative gradient. In other words,

Wt`1 “ Wt ` ⌘
`
XHtT ´ WtHtHtT ´ �1W

t
˘
, (B-6)

where ⌘ is the step size. Note that this is an additive up-
date rule. The negative signs indicate that even if the val-
ues in X, W0 and H0 are non-negative, we are not guar-
anteed to arrive at a non-negative final solution. However,
by selecting our step size as

⌘ “ Wt

WtHtHtT ` �1Wt
, (B-7)

and substituting in the gradient descent update in equa-
tion B-6, the additive rule becomes a multiplicative up-
date rule:

Wt`1 “ Wt d
`
XHtT ` ✏qij`

WtHtHtT ` �1Wt ` ✏
˘
ij

. (B-8)

We add a small positive real number ✏ to avoid division
by zero. This result is identical to the result in equation
13.

Multiplicative Update Rule for H

Similarly for H, we write the objective function in equa-
tion B-2 as

FH “ Tr
`
pX ´ WHqT pX ´ WHq

˘
` �2TrpHT Hq

` �Tr
`
pHHT ´ IqT pHHT ´ Iq

˘
.

(B-9)
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Taking the partial derivative of FH with respect to H,
and simplifying the expression further,

BFH

BH “ ´2WT X ` 2pWT WHq ` 2�2H

` 4�HT HHT ´ 2�H

9pWT WHq ` �2H ` �HT HHT

´
`
WT X ` �H

˘
.

(B-10)

The gradient descent update step then becomes

Ht`1 “ Ht ` ⌘
´
Wt`1T

X ` �Ht

´ pWt`1T
Wt`1Ht ` �2H

t ` �HtT
HtHtT q

¯
.

(B-11)
If we select the step size to be

⌘ “ Ht

Wt`1T Wt`1Ht ` �2Ht ` �HtT HtHtT
, (B-12)

and substitute this value in equation B-11 and simplify,
we arrive at the multiplicative update rule for H

Ht`1 “
Ht d

`
Wt`1T

X ` �Ht ` ✏
˘
ij`

Wt`1T Wt`1Ht ` �2Ht ` �HtT HtHtT ` ✏
˘
ij

(B-13)
This is identical to the update rule shown in equation 14.

Constrained Optimization

The update rules in equations B-8 and B-13 solve the
non-constrained problems in equation B-1 and B-2. How-
ever, our original problem in equation 10 is a constrained
one. Since we initialize the matrices W and H with non-
negative values, it is trivial to see that the multiplicative
update rules in equations B-8 and B-13 will always give
non-negative results, thus satisfying the non-negativity
constraint. Furthermore, since the sparsity constraint on
the features wi is applied to the initial features, W0, any
further application of the update rule in equation B-8
will not modify the zero elements in the matrix W, and
hence, the initial feature sparsity is preserved. There-
fore, although we solved for the non-constrained problem
in equations B-1 and B-2, our solution is still valid for
the constrained problem in equation 10. It is important
to note that the final solution is dependant on the ini-
tial features W0. If W0 had a wrong sparsity structure,
then the final results would not be accurate. Therefore,
it is essential to initialize W0 properly to obtain accurate
results.
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